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Efficient Parallel Sparse Tensor Contraction
Somesh Singh and Bora Uçar

Abstract—We investigate the performance of algorithms for
sparse tensor-sparse tensor multiplication (SpGETT). This op-
eration, also called sparse tensor contraction, is a higher or-
der analogue of the sparse matrix-sparse matrix multiplication
(SpGEMM) operation. Therefore, SpGETT can be performed by
first converting the input tensors into matrices, then invoking high
performance variants of SpGEMM, and finally reconverting the
resultant matrix into a tensor. Alternatively, one can carry out
the scalar operations underlying SpGETT in the realm of tensors
without matrix formulation. We discuss the building blocks in both
approaches and formulate a hashing-based method to avoid costly
search or redirection operations. We present performance results
with the current state-of-the-art SpGEMM-based approaches, ex-
isting SpGETT approaches, and a carefully implemented SpGETT
approach with a new fine-tuned hashing method, proposed in this
article. We evaluate the methods on real world tensors by contract-
ing a tensor with itself along varying dimensions. Our proposed
hashing-based method for SpGETT consistently outperforms the
state-of-the-art method, achieving a 25% reduction in sequential
execution time on average and a 21% reduction in parallel execu-
tion time on average across a variety of input instances.

Index Terms—Hashing, tensor contraction.

I. INTRODUCTION

T ENSORS, or multidimensional arrays, are widely used in
modeling and analyzing multidimensional data [9], [25],

[41]. The breadth of the applications and their importance has
led to the development of libraries covering different applica-
tion needs. A common operation provided by those libraries is
tensor-tensor multiplication, also called tensor contraction, see
for example Tensor Toolbox [4], Cyclops [45], and also others in
a recent survey [38]. This operation takes two tensors and a set of
indices along which to carry out the multiplication and produces
another tensor. Suppose for example that A is a 4-dimensional
tensor of size I × J × P ×Q, and B is a 3-dimensional tensor
of size P ×Q× L. Two dimensions of A and B have the
lengths P and Q, and hence one can contract A and B in either
or both of those dimensions. If we contract A and B on the
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dimension of lengthP , we will obtain C of size I × J ×Q× L,
whose elements are given by cijql =

∑p=P
p=1 aijpq · bpql, where

the individual elements of the tensors are shown with the cor-
responding lower-case letters. Similarly, we obtain C of size
I × J × L, if we contract along the two agreeing dimensions,
where cijl =

∑P
p=1

∑Q
q=1 aijpq · bpql.

Tensor contraction is a higher order analogue of the ubiq-
uitous matrix-matrix multiplication (GEMM). In fact, tensor
contraction can be cast as matrix-matrix multiplication after
suitably rearranging the tensors. For example, using the same
tensors above, the results cijl =

∑P
p=1

∑Q
q=1 aijpq · bpql, can be

computed by rearranging A into a matrix A of size IJ × PQ
and B into a matrix B of size PQ× L so that the matrix C is
of size IJ × L, where C = AB contains the resulting elements
of C in a matrix. Given this relation with the GEMM, tensor
contraction is dubbed GETT [47].

We investigate the GETT operation on large sparse tensors.
This operation, called SpGETT, takes two sparse tensors and
a set of contraction indices and performs the scalar multiply
and add operations as summarized above. Much like the sparse
variant of GEMM, called SpGEMM, SpGETT arises in a va-
riety of application areas. Common applications mentioned in
earlier work [30], [31] include quantum chemistry/physics and
deep learning [2], [39], [40]. More recent applications arise
in multilayer network analysis [14], which are more akin to
the applications of SpGEMM in network analysis. In order to
achieve efficiency in SpGETT operations, one has to face many
challenges due to low arithmetic intensity. We target efficient
execution of SpGETT on shared memory parallel systems. Since
the SpGETT operation can be performed along different dimen-
sions depending on the use case, an SpGETT library should
provide a simple interface. As argued in previous work [5], [22],
none of the dimensions should be favored or preferred in the
interface. This is doable by adopting the well-known coordinate
format, which stores all indices of a nonzero explicitly along
with its value.

A first approach to implement SpGETT of two tensors A
and B converts them to matrices A and B such that the con-
traction indices are in the columns of A and in the rows of B.
Then an SpGEMM will compute the nonzeros of the output
tensor. This is a common approach in libraries that use existing
matrix-oriented software, for example Tensor Toolbox [4]. As
the tensors can have multiple dimensions, each in the orders of
millions, putting all possible tuples of contraction indices in the
columns of A and the rows of B is not advisable. Instead one
should use those tuples of contraction indices in which A and
B have nonzeros. Finding the nonempty tuples of contraction
indices for two tensors and numbering them consistently so that
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the multiplication AB computes the nonzeros of the desired
tensor is a problem that does not appear in dense GETT nor
in SpGEMM. We investigate two methods for SpGETT via
SpGEMM in Section III, which differ in the way they matricize
the input matrices: SB− Smat uses sorting, and SB− Hmat
uses hashing. Any sorting or hashing method can be used in
these two methods.

A more direct approach to implement SpGETT of two tensors
A and B keeps them as tensors and carries out the necessary
multiply-add operations without constructing matrices. Two key
problems here are to know which entries to multiply and where
to add the result, which can again be tackled with a sorting
or a hashing scheme. These two problems are raised by the
multi-dimensional nature of both input and output tensors. While
the first approach, described in the preceding paragraph, to
SpGETT can rely on the existing high performance SpGEMM
libraries, this second approach needs new, efficient implementa-
tions. We investigate SpGETT natively on tensors in Section IV
and propose SB− TC to carry out this operation. SB− TC uses
a hashing scheme (detailed in Section V) to store tensor nonzeros
to avoid costly search and redirection operations. Parallelization
of the multiply-add operations in SB− TC is achieved by taking
the hashing data structure into account.

Hashing arises in both types of algorithms for SpGETT. The
hashing scheme should allow fast construction, and have low
memory overhead and lookup time. When all elements to be
hashed are unique and known beforehand, static hashing ap-
proaches with expected linear time construction, linear memory
overhead, and worst case constant time lookup are possible,
see for example earlier work [8], references therein and its
predecessor [19]. In the SpGETT operation though the elements
to hash are not known ahead of time, and have duplicate key
values. Because, the nonzero positions of the output tensor C
are not available, and different nonzeros of the tensor A can
be in the same column of A. As the static hashing methods are
not applicable, we introduce a parallel dynamic hashing method
in Section V which works natively on tensors and enables fast
SpGETT. The proposed hashing scheme is also effective and
usable in converting tensors to matrices for the SpGETT via
SpGEMM approach.

After presenting a brief background in Section II, we investi-
gate the SpGEMM-based approach to sparse tensor contraction
in Section III. We then describe in Section IV an adaptation of
a well-known SpGEMM algorithm to the SpGETT case, which
is the main contribution of this paper. A parallel fast hashing
scheme to be used in this approach is proposed in a separate
Section V. We then compare the proposed SpGETT algorithm
with two current state of the art SpGETT implementations in
Section VI, one using SpGEMM routines and the other na-
tively working in tensors. Section VII concludes the paper. Our
contributions are, primarily, (i) SB− TC for SpGETT which
demonstrates on average 21% reduction in parallel execution
time with respect to the state-of-the-art across a variety of input
instances, (ii) a parallel dynamic hashing method that lies at the
core of SB− TC; and, secondarily, (iii) a thorough discussion
of the two SpGETT-via-SpGEMM methods SB− Smat and
SB− Hmat, and, to the best of our knowledge, their first large
scale comparison.

II. BACKGROUND AND RELATED WORK

We briefly describe the terms and notations used in this paper.
We denote tensors using boldface script letters as in A, matrices
using boldface capital letters as in A, vectors using boldface
lower case letters as in a and scalars using lower case letters, as
in a.

A tensor A ∈ Rn1×n2×···×nd has d modes and is of order d.
For an order d tensorA, one needs d indices to index intoA. For
example aijkl is a nonzero of a 4D tensor A ∈ RnI×nJ×nK×nL .
We refer to a subtensor obtained by fixing all except m indices
of the tensor as a m-order subtensor of the tensor [50]. For
example, in tensor A ∈ RnI×nJ×nK×nL , A::k: ∈ RnI×nJ×nL

is a 3-order subtensor of A.
We use Einstein notation to represent tensor contractions

whereby the indices (and modes) that appear in both input
tensors are the contraction indices (and modes), and a sum-
mation over these indices is implied. The contraction indices
(and modes) do not appear in the output tensor. The remaining
indices (and modes) appear in the output tensor and are called
the external indices. For example, consider the contraction of
two 4D tensors, A ∈ RnI×nJ×nP×nQ , B ∈ RnP×nQ×nK×nL ,
along two modes, P and Q, to produce a 4D output tensor C.
This operation is written as

Cijkl = AijpqBpqkl indicating

cijkl =

nP∑

p=1

nQ∑

q=1

aijpq · bpqkl (1)

Indices {p, q} are the contraction indices and {P,Q} are the
contraction modes, while {i, j, k, l} are the external indices and
{I, J,K,L} are the external modes. We denote an ordered set
of contraction modes of a tensorA using cA and specific indices
in the set cA of contraction modes using the boldface font, as in
cA. Similarly, we denote an ordered set of external modes of a
tensor A using eA and specific indices in the set eA of external
modes using the boldface font, eA.

A d-mode tensor with d > 2 can be matricized, or reshaped
into a matrix. Consider a tensor A ∈ Rn1×n2×···×nd . The modes
S = {1, 2, . . . , d} can be partitioned into two disjoint sets SR =
{r1, r2, . . . , rp} and SC = {c1, c2, . . . , cd−p}, and mapped, re-
spectively, to the rows and to the columns of a matrix A ∈
R{nr1

×nr2
×···×nrp}×{nc1

×nc2
×···×ncd−p

}. We use A = ASR×SC

to denote that the matrix A is obtained by matricizing the
tensor A with the partition SR and SC of the modes. Here
it is convenient to refer to the rows and the columns of A,
respectively, by a p-tuple r and a (d− p)-tuple c. In this case,
a tensor nonzero ai1i2...id is mapped to a matrix nonzero arc,
where r corresponds to the indices inSR andc corresponds to the
remaining indices inSC . While convenient, it is not necessary to
have the first p modes of A in SR. When the tensor A is sparse,
many rows and columns in A = ASR×SC

will have only zeros,
if all p-tuples from SR and (d− p)-tuples from SC are used as
indices in A.

The contraction of two tensors A and B, along specified
contraction modes, can be formulated as matrix-matrix multi-
plication by matricizing A and B suitably. The external indices
of A map to the rows of A, and hence the contraction indices
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Algorithm 1: Row-Wise Gustavson’s Algorithm for
SpGEMM C = A×B.

map to the columns of A. Similarly, the contraction indices of
B map to the rows of B, and the remaining indices map to the
columns ofB. By slightly abusing the index notation, the sample
contraction (1) can be written as

cij,kl =
∑

p,q

aij,pq · bpq,kl ,

where the two matrices can be recognized, and the whole
computation can be succinctly written as the matrix-matrix
multiplication C = AB. When A and B are sparse, many cij,kl
can be zero, as the nonzeros in the 2-order subtensors Aij:: do
not necessarily share common indices with the nonzeros in the
2-order subtensors B::kl.

There are a number of popular storage formats for sparse
tensors, such as COO, F-COO [29], HiCOO [27], CSF [44] and
its variant [34]. These formats each have certain advantages for
certain operations, or for memory use [48]. The format COO cor-
responds to the well-known sparse matrix storage format called
the coordinate format. In this format, each nonzero element is
represented by storing its indices in all dimensions and its value
separately. We use COO as the input and output format, as it is
the easiest one for a user.

A. Gustavson’s Algorithm for SpGEMM

Gustavson’s algorithm [21] is widely used for SpGEMM. Sev-
eral multi-threaded CPU implementations of SpGEMM follow
Gustavson’s algorithm [3], [33] since it has less synchronization,
lower memory traffic, and simpler operations compared to the
inner product and outer product formulations of SpGEMM. Gus-
tavson’s algorithm also underlies the algorithms for SpGETT
investigated in this paper. We therefore summarize a parallel
version of this algorithm in Algorithm 1.

As can be seen in Algorithm 1, Gustavson’s algorithm pro-
ceeds row-wise on matrix A. For each nonzero aik in a row of
A, the kth row of matrix B is read and is scaled by aik. When
the ith row of A is processed, the sum of the scaled rows of B
generates the ith row of the output matrixC. Since the rows of the
output matrix C can be constructed independent of each other,
Gustavson’s algorithm exposes sufficient parallelism. Despite
the highly parallel nature of Gustavson’s algorithm, its efficient
parallelization is challenging. This is so because neither the
sparsity pattern of the output matrix, nor the number of nonzeros
in the output matrix can be known without inspecting the input
matrices. This may lead to load imbalance among the threads,

since rows of the output matrix are assigned to threads, and
different rows can necessitate a varying number of operation
counts. Accumulating the scaled rows of B in order to compute
a row of C requires a method to quickly lookup for a scalar
multiplication to be added to an existing entry in C (Line 6 of
Algorithm 1), or creating a new entry inC (Line 8). This is often
implemented with a sparse accumulator (SPA) per row of the
output matrix. SPA aids in efficient accumulation of intermediate
products, which can be written back to the output matrix after all
the nonzeros in the row of the output matrix have been computed.
The design choice of the sparse accumulator depends on the
sparsity of the inputs and output, and there are mainly four
variants: using heap [3], [32], hashing [1], [12], sorting [7], and
dense arrays [20], [36].

B. Related Work on Tensor Contractions

A large body of prior work has tackled the problem of efficient
tensor contractions. We primarily focus on the previous work
targeting parallel sparse tensor contraction on shared memory
systems.

TACO [24] and COMET [49] are compilers for dense and
sparse tensor computations, including tensor contractions. Given
a tensor algebra expression and the preferred storage format,
these compilers automatically generate a tensor algebra kernel.
Mosaic [6] is a sparse tensor algebra compiler that extends
TACO. The Sparse Polyhedral Framework [51] generates code
for sparse tensor contractions. The Cyclops Tensor Frame-
work [46] enables automatic parallelization of sparse tensor
computations, including sparse tensor contractions, expressed
algebraically.

The Tensor Toolbox [4] provides a suite of tools in MATLAB
for computations on tensors. It includes a method for sparse ten-
sor contractions. ITensor [18] and Libtensor [23] are frameworks
that support multithreaded, block-sparse tensor contractions.
Sparta [31] is the current state-of-the-art for parallel element-
wise sparse tensor contractions, using the order-agnostic coordi-
nate (COO) format. It uses a hash-based representation for input
sparse tensors and implements a hash-based sparse accumulator.
Furthermore, it proposes data placement strategies for optimiz-
ing sparse tensor contractions on tiered memory systems with
DRAM and the Intel Optane DC Persistent Memory Module
(PMM). We compare our proposed methods against Sparta
on homogeneous DRAM memory in Section VI. Our tensor
contraction method uses a novel dynamic hashing method for
representing the input tensors as well as the sparse accumulator,
which complements the Gustavson’s-like formulation of sparse
tensor contractions. Athena [30] extends Sparta to efficiently
perform a sequence of sparse tensor contractions on tiered
memory systems.

C. Related Work on Hashing

As discussed before, hashing methods are used in SpGETT
via SpGEMM and also in the SpGETT approach working on
tensors. We review some key concepts in the hashing methods
suitable for our use case.
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Hashing is used to store and retrieve a set of items. A hash
function maps the items, called keys, to a set of values which
are then used for indexing the location of the keys in a table. In
static hashing, one is given a set of distinct items in advance,
and this set does not change. Once a static hashing structure has
been constructed, it is only queried for the existence of items
and retrieving them. In dynamic hashing, the set of items is
not known in advance; they arrive throughout the execution of
a program. In the typical use cases, the newly arrived items
that are not present in the hash table are inserted into the table,
and those that are present are retrieved. The static case allows
one to develop worst case constant time lookups. Such hashing
methods which enable worst case constant time lookups are
referred to as perfect hashing methods. In this paper, the items
will be the coordinates of tensor nonzeros, which are d-tuples
for a d-dimensional tensor. The worst case time of O(d) for a
lookup is therefore asymptotically optimal.

There are several static [8], [16], [28], [37], [42] and dy-
namic [13], [35] perfect hashing methods proposed in the liter-
ature. Cuckoo hashing [35] is a well-known dynamic hashing
method. It uses a set of � hash functions. We describe the
well-known case of � = 2, which has been extensively studied
and is well-understood. For each arriving item, two hash values
are computed, giving the two possible locations for the item.
The item is placed in one of the locations. For lookup, one has to
check then only two locations. Assuming that the hash functions
take O(1)-time to compute, the lookups are thus asymptotically
optimal. Insertion of an item in Cuckoo hashing is O(1)-time in
the average case. If both the possible locations for an incoming
item x are already occupied, then one of the locations is picked
randomly, the item y at that location is replaced by x, and y
is moved to its alternate location. If the other location for y
is occupied, the item z store there is replaced by y, and a new
position for the displaced element z is sought in the same fashion.
This is continued until a free location is found or a rehash is
necessary (in the case of cycles). Rehashing takes O(n) in the
average case, where n is the number of items. For the above
complexity bounds to hold, one needs to maintain the invariant
that no more than half of the total locations are occupied.

We introduce a dynamic perfect hashing method supporting
the insertion of items one by one, and performing worst-case
optimal time lookups on the updated hash data structure. This is
imperative to support operations involved in sparse tensor con-
tractions. The previous algorithms for sparse tensor contractions
that employ hashing do not use perfect hashing methods. To the
best of our knowledge, our proposed tensor contraction method
is the first to use a perfect hashing method for sparse tensor
contractions.

III. SPGETT VIA REDUCTION TO SPGEMM

Consider the tensor contraction operation CeA,eB =
AeA,cABcB ,eB , with external modes eA and eB corresponding
to, respectively, the external modes of A and B. The contraction
modes cA and cB of A and B have necessarily the same size,
and are ordered consistently. We discuss here how to process the
tensors so that the contraction can be computed first by invoking

a high performance SpGEMM library and then by converting the
resultant matrix to a tensor.

In order to use SpGEMM routines to compute C = AB
instead of the SpGETT above, the matrices should be defined
according to matricizations A = AeA×cA and B = BcB×eB .
As discussed before, many tuples of indices in external or
contraction modes may be zero in A or B. Typically, the
number of empty rows or columns in A and B can be much
more than the number of nonzeros in the matrices, if all tu-
ples in external or contraction modes are created as rows or
columns in these matrices. As this sparsity will cause slow-
downs in SpGEMM software, either special SpGEMM li-
braries should be developed [22] or A and B should contain
only nonempty rows and columns. We discuss the latter ap-
proach so that one can invoke any high performance SpGEMM
library.

The nonempty subtensors AeA,: define the nonzero columns
of A, and the nonempty subtensors B:,eB define the nonzero
rows of B. In this case, to compute C = AB, the columns of
A and the rows of B should be numbered consistently. That is,
if an integer j is assigned to the column index j of a nonzero
ai,j in A where i are the indices in the external modes and
j are the indices in the contraction modes, then each nonzero
bj,k in B should necessarily be assigned j as the row index.
We refer to this requirement as the consistency condition on the
matricizations of two tensors. Furthermore, the rows ofA should
correspond to nonempty subtensors A:,cA , and the columns of
B should correspond to nonempty subtensors BcB ,:. After the
multiplication, the resultant matrix C should be converted to
the tensor C by mapping each nonempty row index i of C to the
corresponding |eA|-tuple i, and each nonempty column index j
ofC to the corresponding |eB |-tuple j. Converting the indices of
the nonzeros of the matrix C to those of the tensor C is referred
to as tensorization.

The matricizations of A and B and the tensorization of C are
coupled, as the nonzero rows ofA and the nonzero columns ofB
define, respectively, the rows and the columns of C. Therefore,
we need to map an |eA|-tuple i to an integer i, where Ai,: is a
nonempty subtensor, and also need the inverse of this map for
the tensorization ofC. A similar discussion holds for |eB |-tuples
defining nonempty subtensors B:,eB and the columns of C.

Typically, sorting or hashing is used for operations similar to
consistent matricizations ofA andB, and the coupled tensoriza-
tion ofC. We therefore discuss two schemes SB− Smat, which
uses sorting, and SB− Hmat, which uses hashing, to perform
SpGETT via a reduction to SpGEMM.

A. SB− Smat: Sorting for SpGETT-via-SpGEMM

The key steps in matricizing A and B for computing
CeA,eB = AeA,cABcB ,eB via SpGEMM C = AB are shown
in Algorithm 2. This algorithm sorts the indices of the nonzeros
of A and B in the contraction modes together in order to obtain
a consistent numbering of the columns of A and the rows of B.
Then, the indices of the nonzeros of each tensor in the external
modes are sorted to obtain integer ids for each unique |eA|-tuple
and each unique |eB |-tuple. It is necessary to keep a reverse
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Algorithm 2: Consistent Matricization and Coupled
Tensorization With Sorting

1: Let LA(i) contain the cA indices of the ith nonzero of A
and LB(j) contain the cB indices of the jth nonzero of
B;

2: Sort LA and LB together, by increasing index, into L
using contraction indices as key, while keeping a
reference to the original nonzero as auxiliary data;

3: Scan L (in the sorted order) to generate a unique integer
id for each unique cA-tuple, while keeping that integer id
for the corresponding nonzero in A or B;

/* the column ids in the matrix A and
the row ids in the matrix B are ready
*/

4: Let L′
A(i) contain the eA indices of the ith nonzero of A

and the integer id of the cA indices of the same nonzero
computed in Step 3;

5: Sort L′
A with respect to the eA indices to obtain a unique

integer id for each unique eA-tuple, combine it with the
integer id of the corresponding cA indices for building A
in the coordinate format. While doing so, keep a map
from the unique integer id to a nonzero having the
corresponding eA indices for translating the row indices
of the nonzeros of C to eA indices in C;

6: Perform Steps 4 and 5 for the external indices of B to
obtain B and a map for translating the column indices of
the nonzeros of C to eB indices in C;

map for the row and column ids of C for obtaining a tensor after
SpGEMM.

Algorithm 2 creates A and B in the coordinate format, which
are then converted to the CSC or CSR formats for invoking an
existing SpGEMM library. The resulting matrix C is again in
the CSC or CSR formats. A pass over the nonzeros is needed to
translate the indices of the nonzeros of C to that of C by using
the maps created in Steps 5 and 6 of Algorithm 2. Note that
when a cA is nonzero and the corresponding |cB |-tuple is zero,
Bwill have an empty row. WhenA is processed in an SpGEMM
row-by-row as in Algorithm 1, this do not create much overhead.
Similarly, when a |cA|-tuple is zero and the corresponding |cB |-
tuple is nonzero, A will have an empty column. This does not
create an overhead for a row-by-row SpGEMM.

B. SB− Hmat: Hashing for SpGETT-via-SpGEMM

This method uses hashing for effecting consistent matriciza-
tion of A and B and for assigning ids to their external indices,
eA and eB. The aim is to take advantage of fast hashing methods
when available. As arbitrary hashing methods cannot in general
be competitive with the sorting approach, we propose an efficient
hashing method later in the paper.

The key idea for the consistent matricization is to hash the
contraction indices of the nonzeros in A and B together into a
single hash table. We do this by inserting all contraction indices
of A and B in a single batch. Note that duplicates are likely in
this batch, and hence static hashing methods are not well suited.
Thus, we use a dynamic hashing approach as summarized below.

We maintain a counter to assign consecutive ids to unique
contraction indices, cA. We also maintain an indirection array
for all nonzeros in A and B combined to store the id of contrac-
tion indices, cA for every nonzero in both input tensors. We use
the contraction indices as key for hashing. We scan the nonzeros
of A and B. For each nonzero in A and B, we check if the
contraction indices, cA, is present in the hash table. If it is not
present, we insert cA into the hash table, along with the new id
that we assign to cA using the counter, which is stored in the
indirection array. If cA for a nonzero is already present in the
hash table, we retrieve its id from the hash table and write it to
the index of the nonzero in the indirection array.

Next, in order to obtain the ids for the external indices of each
nonzero, we process A and B separately. We create separate
hash tables for A and B using the external indices of the
nonzeros as the hash key. As in the sorting-based algorithm, we
create A and B in the coordinate format, which we call COOA

and COOB respectively. Again, we maintain a global counter
to assign consecutive ids to the distinct external indices, eA, of
A. We first scan the nonzeros of A. For each nonzero in A we
check if the external indices, eA, is present in the hash table by
performing a lookup. If it is not present, we insert eA into the
hash table, along with the new id that we assign to eA using the
counter. If eA for a nonzero is already present in the hash table,
we retrieve its id from the hash table and write it to the index of
the nonzero as row-id in COOA. Furthermore, we write the id
of contraction indices of the nonzero, cA, as the column-id in
COOA by accessing the indirection array previously populated.
We also create a reverse map of external indices to their ids in
order to be able to tensorize C.

We follow the same procedure, as for A, for assigning ids to
the external indices of B and for creating B by appropriately
populating COOB.

As in the sorting-based algorithm, A and B are converted
to the CSC or CSR formats for invoking an existing SpGEMM
library. After that, the indices of the nonzeros ofC are translated
to |eA|- and |eB |-tuples for populating the nonzeros of C.

IV. SB− TC: SPGETT NATIVELY ON INPUT TENSORS

We present SB− TC to carry out parallel SpGETTCeA,eB =
AeA,cABcB ,eB natively on tensors. Recall that for this tensor
contraction to be feasible, the contraction modes cA and cB
of A and B, respectively, must be of the same size and ordered
consistently. Recall also that for nonzerosaeA,cA

and bcB,eB
, the

indices cA and cB refer to the indices in the contraction modes
cA of A and cB of B, respectively. SB− TC closely follows
Gustavson’s algorithm without explicitly matricizing the input
tensors, and builds the output tensor subtensor by subtensor.
The method is empowered by a novel parallel perfect hashing
method to avoid expensive searching and sorting.

Fig. 1 describes the task of contracting sparse tensors along
two dimensions with Gustavson’s algorithm for two four-
dimensional tensors A ∈ RI×J×P×Q and B ∈ RP×Q×K×L.
The contraction modes, {P,Q}, are the last two dimensions
of A and the first two dimensions of B. In order to compute
an entry cijkl of the output tensor, nonzeros of A having the
first indices (i, j) should be multiplied with the nonzeros of
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Fig. 1. Conceptual description of SB-TC which follows Gustavson’s algorithm
without explicit matricization.

Algorithm 3: SB− TC: SpGETT Using Gustavson’s
Algorithm-Like Formulation.

B having the last indices (k, l) when they share the contraction
indices (p, q), and the scalar multiplications should be added. As
depicted in the figure, in order to compute a subtensor Cij:: of
the output tensor C, the nonzeros aijpq in the subtensor Aij:: are
traversed. The subtensors Bpq:: are scaled by the nonzero aijpq ,
identified by dashed lines in the figure, and then sum-reduced.
Since the subtensors in the input tensors A and B are sparse,
and the output subtensor Cij:: may also be sparse, we need to
access the input and output nonzeros efficiently. Thus, the key
points are to efficiently (i) access all nonzeros of A that have
the same external indices (i, j); (ii) access all nonzeros of B
that have the same external indices (k, l); (iii) combine these
two lists according to the contraction indices. Below we describe
how the proposed SpGETT algorithm performs these operations
efficiently in parallel, without matricizing the tensors.

The proposed SpGETT method is described in Algorithm 3.
This method can in principle use any dynamic hashing scheme.
We therefore discuss this algorithm independent from the hash-
ing approach, and defer the presentation of the proposed dy-
namic hashing scheme to the next section.

At a high level, SB− TC performs SpGETT such that the
subtensors CeA,: of the resultant tensor are constructed inde-
pendent from each other, in parallel, indicated by the parallel
parfor loop at Line 3 in Algorithm 3. In order to construct an
output subtensor CeA,:, every nonzero in the subtensor AeA,:

is to be multiplied (Line 7 in Algorithm 3) by all nonzeros
in an appropriate subtensor BcB,:. The additive contributions
from the product of pairs of nonzeros are assembled in a sparse
accumulator (Lines 9 and 11). Finally, the contents of the sparse
accumulator are written to output subtensorCeA,: (Line 13). The
details of this algorithm are described below.

A parallel parfor loop goes over all the nonempty subtensors
AeA,: of A (Line 3 in Algorithm 3). In order to populate a
subtensor CeA,: of the output tensor C, the algorithm loops
over all the nonzeros in a subtensor AeA,: of A (Line 5 in
Algorithm 3). Doing so efficiently requires all nonzeros of A
having external indices eA to be gathered. To accomplish this,
we build a hash data structure HA for A using the external
indices of its nonzeros as the key (Line 1 in Algorithm 3). In this
hash data structure, each unique external index of eA ofAmaps
to a distinct location. Furthermore, a location in the hash data
structure points to a contiguous array storing the nonzeros of A
that share the external indices eA. Note that all nonzeros in this
array will have different indices in the contraction modes. Such
a location in HA corresponds to a row of the matrix A without
explicit conversion. Looping over the nonzeros inAeA,: reduces
to going over the contiguous array pointed to by the location of
eA in HA.

Furthermore, for each nonzero aeA,cA
in the subtensor AeA,:

of A, the algorithm goes over all the nonzeros in the corre-
sponding subtensor BcB,: of B (Line 6 in Algorithm 3), and
multiplies aeA,cA

with every nonzero bcB,eB
in BcB,: (Line 7 in

Algorithm 3). Recall that for every nonzero aeA,cA
in AeA,:, its

contraction indices cA must be equal to the contraction indices
cB in the nonzeros in BcB,:. To facilitate accessing the nonzeros
in a subtensorBcB,: ofB efficiently, all nonzeros inBcB,: should
be gathered. We thus build another hash data structure,HB forB
using the contraction indices of its nonzeros as the key (Line 2
in Algorithm 3). In HB, each unique tuple cB of contraction
indices maps to a distinct location. Furthermore, a location in
the hash data structure points to a contiguous array storing the
nonzeros of B that share the same contraction indices cB. Note
that all nonzeros in this array will have different indices in the
external modes, eB . Such a location in HB corresponds to a row
of the matrix B without explicit conversion. Looping over the
nonzeros in BcB,: reduces to going over the contiguous array
pointed to by the location of cB in HB.

As the algorithm proceeds, in order to assemble the product
of pairs of nonzeros, aeA,cA

and bcB,eB
in the output subtensor

CeA,:, we need to perform lookup (Line 8) and insert (Line 11)
operations. In order to construct the subtensor CeA,: efficiently,
we accumulate the results in a sparse accumulator (SPA) (Line 4,
Algorithm 3). The efficiency of the algorithm is contingent on
the efficiency of the lookup and insert operations. Therefore, we
maintain the SPA as a dynamic hash structure which supports
constant time lookup and efficient insertion, while also being
space efficient. SPA uses the indices of the nonzeros of B in
the external modes as the hash key. Once the entire output
subtensor CeA,: is ready in the SPA, the contents of the SPA
are written out to C at Line 13. Since different threads write a
chunk of nonzeros in C, a global counter is accessed atomically
to reserve the positions of nonzeros produced by a thread—this
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can be implemented with light-weight atomic fetch-and-add
instructions.

A. Preprocessing

After creating the hash data structures HA and HB, we
perform two preprocessing operations before the start of the
SpGETT computation (Line 3 in Algorithm 3), which aid in
efficient computation of SpGETT with the proposed scheme.

1) Estimating the Memory Requirement of the Output Tensor:
In the tensor contraction CeA,eB = AeA,cABcB ,eB , in order to
estimate the total number of nonzeros in the output tensor C
and the number of nonzeros per subtensor CeA,:, we apply
the probabilistic estimation method proposed by Cohen [10].
While the method is originally proposed for SpGEMM involving
sparse matrices, we apply it for tensors. We use the hash data
structures HA and HB of the input tensors, which have been
already built, to conceptually matricize them and estimate the
number of nonzeros in their multiplication. Cohen’s estimator
does multiple rounds r to obtain a good estimate, where each
round takes O(nnz(A) + nnz(B)) time. For our use case, we
empirically determined r = 2 to produce a good estimate as an
upper bound for the number of nonzeros C and in subtensors
CeA,:. This estimation of the nonzeros is thus very practical
and has a time complexity much less than computing C or
its nonzero pattern. Furthermore, its parallelization requires no
communication among threads.

2) Load Balancing: Like Gustavson’s algorithm for
SpGEMM, the parallel Gustavson’s-like formulation of
SpGETT ca suffer from load imbalance among threads due to
disparity in the number of operations per subtensor CeA,: of the
output tensor C. In order to mitigate the work load imbalance
among threads, we make the assignment of subtensors to threads
such that each thread gets assigned a nearly equal operation
count. We apply a parallel, light-weight, load-balancing thread
scheduling scheme proposed for Gustavson’s algorithm for
SpGEMM [33] to our formulation of SpGETT. This is made
possible by the hash tables HA and HB already created, as a
location corresponds to a row in the corresponding matricized
view of the tensor. We count flops for each nonempty subtensor
AeA,: of A. For determining the flops of a subtensor AeA,:, we
sweep over the nonzeros in the subtensor and sum the number
of nonzeros in the appropriate subtensor BcB,:. After collating
the flops of all the subtensors AeA,: in an array, we perform a
prefix sum. We then determine the starting subtensor (and the
number of subtensors implicitly) of A for each of the threads
such that each thread is assigned a close to average number of
flops per thread, as outlined in the original scheme.

B. Optimizations for SpGETT in SB− TC

We make two observations in the proposed algorithm for
SpGETT and apply optimizations that exploit these observations
to enhance the performance of SB− TC. We discuss the two
optimizations below.

1) Handling Subtensors AeA,: of A With a Single Nonzero:
Consider subtensors AeA,: of A, having exactly one nonzero
element. We observe that for such a subtensor of A, each

product can be written directly to the output tensor at its unique
position in the corresponding subtensor CeA,:. This is because
there is no accumulation and thus there is no need for a sparse
accumulator. As a result, we avoid maintaining a hash-based
sparse accumulator for such subtensors of the output tensor. This
optimization is performed on the fly, as the algorithm proceeds,
and does not require any preprocessing.

2) Reducing the Number of Lookups to the Sparse Accumula-
tor: For a subtensor AeA,: of A having more than one nonzero,
we note that for the first nonzero in the subtensor its product
with the nonzeros in subtensor BcB ,: can be written directly to
the output tensor at its unique position in the corresponding sub-
tensor CeA,: This is so as there are no prior entries in the sparse
accumulator and each of the products all have unique positions in
the sparse accumulator. So, all the partial products can be safely
inserted. We make use of this observation to reduce the number
of lookups to the sparse accumulator. In each subtensor AeA,:

of A, we determine the nonzero having the highest number of
nonzeros in the corresponding subtensor BcB,: and make it the
first nonzero in that subtensor of A. This requires performing
preprocessing, which takes time O(nnz(A)).

V. SBhash: A DYNAMIC PERFECT HASHING METHOD

We present a novel dynamic hashing method which we call
SBhash. It is a perfect hashing method, that is, lookups to the
hash data structure are answered in the worst case constant time
per item size; as our data have d indices, the worst case constant
time means O(d) operations. The proposed hashing scheme
allows fast insertion operations on a stream of d-tuples, using a
given set H of nh = |H| indices, where 1 ≤ nh ≤ d, and one or
more input items can have the same nh-tuple. SBhash supports
sequential insertions as well as batch insertions. Batch insertions
can happen in parallel.

A. Design of SBhash

SBhash, as shown in Fig. 2, has a two-level structure for
perfectly hashing the nonzeros of a given tensor using a given
set H of nh indices. The first level is a set of buckets, to which
each of the nh-tuples of indices are mapped. Then, each bucket
Bi has a set of slots, each of which uniquely corresponds to an
nh-tuple mapped to Bi. When nh < d, there can be more than
one nonzero whose nh-tuple maps to a given slot in a bucket. A
slot points to a collection of nonzeros that all map to that slot.
We maintain this collection as a contiguous array which stores
relevant information about each of the nonzeros. We refer to this
array as the auxiliary list of the slot.

For the first level, the hash function is defined as
h(k,x, p, n) := (kTxH mod p) mod n, to find a bucket for a
given nonzero x. Here, n is the number of buckets, p is a prime
number greater than n, the vector k is an nh-tuple, and xH is
the indices of x in the hashing dimensions H . This function has
been used before [8], [19].

Furthermore, consider that bi distinctnh-tuples are mapped as
a result of the first-level hashing to a bucket Bi. If bi = 0, then
nothing is to be stored at that bucket. For nonempty buckets
having bi up to 4, we maintain the slots in the bucket as a
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Fig. 2. SBhash data structure. A nh-tuple k is used as key for the first level
of hashing. Two types of buckets are shown, a bucket with bi ≤ 4 and a bucket
with bi > 4. For a bucket with bi > 4, indices of two nh-tuples from k0 to kr

in K are stored. Empty buckets and slots are denoted by a ∅. In SB− TC,
an item is {〈indices 〉, val}. In SB−Hmat, an item is the id of nonzero in
coordinate representation of tensor.

contiguous array which store the distinct nh-tuples mapped to
the bucket along with their auxiliary list. As shown in Fig. 2,
we maintain a pre-populated set of random nh-tuples, K, of
size 32. For buckets having bi > 4, for mapping the nh-tuples
to slots we perform a second level of hashing. We use a variant
of the standard Cuckoo hashing [35] adapted to the needs of the
SpGETT operation. At each such bucket, we store ids of two
random keys in K, which we use for hashing the items mapped
to the bucket. The number of slots of such a bucket is maintained
at the smallest power of 2 greater than twice bi. As this Cuckoo
hashing variant is at the core of the proposed dynamic hashing
scheme we discuss it in detail. This second level hashing needs
to provide insert and lookup operations. As discussed before in
Section IV, the lookup operations need to be performed one by
one during the contraction operation. The insertions on the other
hand can either be one by one, or in a batch. Therefore, we detail
the insertion, lookup, and parallel batch insertion below.

B. Cuckoo Hashing Specifications

We use a variant of the standard Cuckoo hashing. Given Ns

slots and m items, each item has to be placed in one of the k
slots chosen by � random hash functions. This implicitly defines
a bipartite graph where there are m vertices on one side, and Ns

vertices on the other. Each item chooses � slots by applying
the � hash functions. A perfect hashing will be obtained if
we can perfectly match each item to a unique slot. While the
standard Cuckoo hashing uses a random walk for insertions, we
carefully implement a deterministic method for insertion, which
is described below. We have � = 2.

1) Insertion: In order to obtain two different hash functions,
we pick two keys by selecting two distinct nh-tuples from the
pre-populated setK of randomnh-tuples. In the bucket, we store
the ids of the two nh-tuples that we pick from K. Consider a
bucket Bi with Ns slots having bi distinct nh-tuples mapped to
it by the first level hashing. Let ki

1 and ki
2 be the two random

hash keys for the bucket. Then the two hash functions defined
for the bucket are: h1(k

i
1,x, p,Ns) := (ki

1
T
xH mod p) mod

Ns and h2(k
i
2,x, p,Ns) := (ki

2
T
xH mod p) mod Ns, where

Ns ≥ 2bi. For an item x in bucket Bi, the functions h1(x) and
h2(x) give its two possible locations in the bucket.

The standard random walk-based insertion method for
Cuckoo hashing can be used in our setting with two possi-
ble locations per item. With this method, if both the possible
locations of an item are occupied, we randomly pick one of
the two locations, and displace the item at that location and
move it to its alternate location choice. We continue this until a
free location is found or a rehash is necessary. This approach
has the advantage that it does not use any extra storage; however
it can visit certain items multiple times.

As stated above, insertion in Cuckoo hashing can be reduced
to finding a matching on a bipartite graph, where the items are
vertices on the left and their possible locations are vertices on
the right. There is an edge from an item to each of its possible
locations. Every item, on the left, must be matched to exactly one
location, on the right. Our deterministic approach for insertion
efficiently solves this underlying matching problem in order to
assign a unique location to every item in a bucket. Since for an
item x, its possible locations can be determined by evaluating
the hash functions h1(x) and h2(x), we do not store the edges of
the underlying graph explicitly but evaluate the hash functions
on the fly on demand.

For inserting a new item x, its two possible locations are
computed. If one of the locations is free, the item is assigned to
that location. If both the possible locations, h1(x) and h2(x) are
occupied, then the location h1(x) is picked to displace the item
at that location. Note that since every item has only two possible
location choices, there are no further choices to be made as
we walk through the underlying graph to find an augmenting
path to augment the current matching. If we fail to find an
augmenting path, then the location h2(x) is picked to displace
the item at that location and find the augmenting path. The
traversal of the graph can be performed using either breadth-first
or depth-first traversal since both are equivalent in this scenario.
In order to make the algorithm efficient and to avoid additional
overheads, we maintain a single visited array of size NS , the
number of slots, only once across different BFS/DFS traversals
for augmentations, and use it multiple times. We only access the
locations that are required during the current traversal. We use a
marking scheme so as to tell apart the visited/unvisited flags at
an array index, across different traversals. Furthermore, we also
need to maintain the augmenting path for every augmentation.
We again maintain a single array of size number of items, nI ,
to store the items in the augmenting path, and reuse it across
different augmentations; we do not reinitialize the array. This
is akin to a stack in a DFS traversal. Thus, our scheme avoids
additional computational overhead in exchange for additional
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TABLE I
REAL-LIFE SPARSE TENSORS IN OUR TEST-SUITE, THEIR ORDER, THE SIZE IN

EACH DIMENSION, AND THE NUMBER OF NONZEROS

storage for bookkeeping, which is O(Ns + nI). We only spend
the time in finding the augmenting path. Thus, the worst-case
complexity of finding a location for a new item is proportional
to the sum of the cost of traversing the paths corresponding to
its two possible location choices, since � = 2.

If we do not find a free location for an item, then we need to
rehash the items in the bucket. In order to perform a rehash, we
update the hash functions. To update the hash functions, we first
update the number of slots to be the smallest power of 2 greater
than twice the number of items, in order to create sufficient slots
to perform Cuckoo hashing, and also to reduce the frequency of
updating the number of slots. We then pick a pair of keys from
the pool of keys in K. The items are then inserted one by one as
discussed above.

2) Lookup: The lookup to test if a given item is present is
done straightforwardly. The two hash functions are evaluated
for the item to find its potential slots. If both slots are empty,
then the item is not present. Otherwise, if a slot contains an
element it is compared with the given item.

C. Parallel Batch Insertion in SBhash

SBhash can perform a batch insertion of the items when they
are available at the outset.

As a first step, it computes the bucket id for each item by
applying the first level hash function to each item independently,
in parallel. We populate an array, of size number of items, with
the bucket ids of the items. Next, we insert the items into the
SBhash data structure, in parallel. We parallelize the loop over
the items—assigning items to threads and every thread handling
an equal number of items. For each item, we determine its bucket
id by performing a lookup on the array we populated in the first
step. We then insert the item into its assigned bucket following
the procedure described in Section V-A. Now, more than one
item, handled by different threads, can potentially map to the
same slot of a bucket. To ensure thread-safe behavior, when
adding an item into a slot, we determine its position in the
auxiliary list by atomically incrementing the number of items
already present in the list. The auxiliary list is maintained as a
dynamic array which is resized by doubling its size when full.
The resizing of the list involves allocating a new list double

the size, copying all of the existing items over to the new list,
and inserting the new item in the next available position. This
needs to be done as one atomic operation. To resize the list, a
thread acquires a lock on the concerned slot. Thanks to the use
of doubling resizing, the resizing is not frequent. Furthermore,
if the insertion of an item invokes rehashing of the items of the
bucket using Cuckoo hashing, a thread acquires a lock on the
bucket, performs the rehashing and then releases the lock. This
is because rehashing needs to be performed sequentially by one
thread. Note that rehashing of the items of a bucket is infrequent
and is required to be done only for a few buckets.

D. Memory Requirement of SBhash in
SpGETT-via-SpGEMM and SB− TC

As discussed in Sections III-B and IV, SBhash is used in
SB− Hmat and SB− TC. We describe the memory require-
ments of SBhash in both the methods.

In SB− Hmat, we use SBhash for assigning ids to distinct
contraction indices. For this, SBhash uses (nnz(A) + nnz(B))
buckets for the first level hashing. The number of buckets is
an upper bound on the number of unique contraction indices
that are inserted into the hash data structure. At a bucket, the
total number of locations, used for Cuckoo hashing, are upper
bounded by twice the number of occupied locations. Thus, the
total number of locations, across all buckets is upper bounded by
twice the total number of occupied locations, which is much less
than the number of nonzeros, which we callNTOS . Furthermore,
at each occupied location, an auxiliary list stores an integer id of
the nonzeros in the coordinate format of tensors A and B. The
total size of all the auxiliary lists is equal to the total number
of items inserted in the hash data structure, which is equal
to (nnz(A) + nnz(B)). Thus, the total space requirement is
upper bounded by 2× (nnz(A) + nnz(B)) +NTOS integers.
Next, in SB− Hmat, we also use SBhash for assigning ids
to the distinct external indices of A and B separately. Follow-
ing the same analysis as above, the total space requirements
of the hash data structures for the external indices of A and B
are upper bounded by 2× nnz(A) +NTOS integers, and by
2× nnz(B) +NTOS integers respectively.

For SB− TC, we use SBhash to create hash data struc-
tures HA and HB for tensors A and B, respectively. HA uses
nnz(A) buckets for the first level hashing. The number of
buckets is an upper bound on the number of distinct external
indices of A. At a bucket, the total number of locations used
for Cuckoo hashing are upper bounded by twice the number of
occupied locations. Thus, the total number of locations across all
buckets is upper bounded by twice the total number NTOS of
occupied locations. Furthermore, in order to improve locality,
at each occupied location the auxiliary list stores the indices
and the values of the nonzeros of A. The total size of all the
auxiliary lists is equal to the total number of items inserted in
the hash data structure, which is equal to nnz(A). Therefore,
the total space requirement of all auxiliary lists combined is
d× nnz(A) integers and nnz(A) double-type nonzero values.
Putting it all together, the total space requirement of HA is
upper bounded by (d+ 1)× nnz(A) +NTOS integers and
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nnz(A) double-type values. Performing a similar analysis for
HB, the total space requirement of HB is upper bounded by
(d+ 1)× nnz(B) +NTOS integers and nnz(B) double-type
values.

In SB− TC, we also use SBhash for maintaining the sparse
accumulator per subtensor, CeA,: of C. For this, the number
of buckets in SBhash, for the first level hashing, is set to the
estimated number of nonzeros ñnz(CeA,:), which is an upper
bound on the number of nonzeros in CeA,:. At a bucket, the
total number of locations, used for Cuckoo hashing, are upper
bounded by twice the number of occupied locations. Thus, the
total number of locations, across all buckets is upper bounded
by twice the total number of occupied locations, NTOS . In order
to improve locality, at each occupied location the auxiliary list
stores the external indices eC (= eB) of the nonzero along
with the value of the nonzero. Thus, the total space require-
ment of all the auxiliary lists combined is |eB | × nnz(CeA,:)
integers and nnz(CeA,:) double-type nonzero values. Putting it
together, the total space requirement is upper bounded by |eB | ×
nnz(CeA,:) + ñnz(CeA,:) +NTOS integers and nnz(CeA,:)
double-type values.

VI. EVALUATION

We carry out the experiments on a machine having Intel
Xeon E7-8890 v4 CPU with 96 cores (four sockets, 24 cores
each), clock-speed 2.20 GHz, 240 MB L3 cache and 1.5 TB
memory. The machine runs Debian GNU/Linux 11 (64-bit).
The codes are compiled with g++ version 13.2.0 with the
flags -O3, -std=c++17 and -fopenmp for OpenMP par-
allelization. We present experiments on real-life tensors from
FROSTT [43]. Table I summarizes the characteristics of the
real-life tensors in our test-suite. All our codes are available
at https://github.com/ssomesh/parTC.

We perform a comparative study of the performance of differ-
ent methods for SpGETT: SB− Smat, SB− Hmat, SB− TC,
and the existing state-of-the-art method for sparse tensor con-
traction, Sparta [31]. We evaluate all methods on the SpGETT
operation CeA,eA = AeA,cAAcA,eA , where A is a sparse tensor
and C is the resultant tensor obtained by contracting A with
itself along the specified contraction modes, cA. Recall that this
operation can be viewed as an SpGEMM operation C = AAT ,
where A is a sparse matrix obtained by matricizing A, such that
eAindexes the rows and cAindexes the columns of A; C is the
resultant square matrix of size |eA| × |eA|. The two operands
are represented separately; AeA,cA and AcA,eA are assumed to
be two arbitrary tensors.

A d-dimensional input tensor can be contracted with itself
along any combination of k modes, for 1 ≤ k < d. Thus, there
are

∑d−1
k=1

(
d
k

)
= 2d − 2 distinct possible contractions. We refer

to each of these contractions as an input instance. For example,
for the five dimensional tensor lbnl− network, all 1-mode, 2-
mode, 3-mode and 4-mode contractions with itself give rise to
25 − 2 = 30 input instances. Across all tensors in Table I, there
are a total of 156 input instances. The time taken for SpGETT
is contingent on the number and distribution of nonzeros in the
input tensors and the resultant tensor, the contraction modes, and

Fig. 3. Geometric mean of the ratio of the time for matricization in
SB−Hmat to that in SB− Smat, across all 85 input instances, with {1,
16, 32, 48, 64, 80, 96} threads. Lower value on the y-axis depicts better relative
performance of matricization in SB−Hmat.

the number of floating point operations. Testing SpGETT on the
tensors from Table I with different contraction modes thus helps
us cover various scenarios.

For all methods, we evaluate the performance of their parallel
and sequential execution. For parallel execution, we consider
thread counts of {16, 32, 48, 64, 80, 96}. For performance
comparison, we only consider the input instances for which
Sparta’s sequential execution takes between one second and
one hour to compute the tensor contraction. There are 85 such
input instances, out of the total 156, which we use for parallel
execution as well. For all methods, on every instance that we
consider, we report the geometric mean of the execution time of
three independent runs.

We begin the evaluation by first comparing the performance
of SB− Smat and SB− Hmat in Section VI-A. We then study
the performance of the better of the two methods, SB− TC and
Sparta in sequential and parallel settings in Section VI-B.

A. Comparison of SB− Smat and SB− Hmat

We compare SB− Smat and SB− Hmat to identify the best
performing variant of the method SpGETT via SpGEMM. These
two methods differ only in their approach to matricization. The
subsequent steps, sparse matrix–sparse matrix multiplication
using a SpGEMM library, and the conversion of the resultant
matrix to a tensor are common to both the methods. We use
CXSparse [11] library for SpGEMM. Thus, it suffices to com-
pare the performance of the matricization step alone in the two
methods to study which of the two has a superior performance.
SB− Smat uses an implementation of quicksort available in the
Sparta library [31].

Fig. 3 compares the performance of matricization in
SB− Hmat and SB− Smat, across all input instances for
different numbers of threads (on the x-axis). In the figure, the
ratio of the run time of matricization in SB− Hmat to that in
SB− Smat is computed for each of the 85 input instances at a
given thread count, and the geometric mean of those 85 ratios is
plotted. As seen here, the ratio is less than 1 for all thread counts,
thus the matricization in SB− Hmat is consistently faster than
that in SB− Smat. In order to give further insight into the
performance, we note that the geometric mean of the time for
matricization in sequential SB− Smat is 39.21 s, while that in
sequential SB− Hmat is 34.89 s. Furthermore, across all input

https://github.com/ssomesh/parTC
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Fig. 4. The run time of SB−Hmat and SB− TC normalized by that of
Sparta for sequential execution on different instances shown on the x-axis.

instances, the geometric mean of the time for matricization in
parallel SB− Smat with 96 threads is 5.87 s and that in parallel
SB− Hmat with 96 threads is 2.70 s. Thus, we conclude that
SB− Hmat is more suitable for SpGETT via SpGEMM.

B. Comparison of SB− Hmat, SB− TC and Sparta

We start by comparing the sequential run time of all three
methods. Fig. 4 shows the relative performance of sequential
execution of SB− TC and SB− Hmat with respect to Sparta
on all input instances. In the y-axis we see the total run time of
SB− TC, SB− Hmat, and Sparta normalized by the total run
time of Sparta for all instances. On the x-axis, the instances
are arranged in nondecreasing order by the ratio of the run time
of SB− TC to Sparta from left to right. The figure also shows
the geometric mean of the ratio of SB− TC’s run time to that
of Sparta (dashed line) and the geometric mean of the ratio of
SB− Hmat’s run time to that of Sparta (dot-dashed line). Lower
values on the y-axis for SB− TC and SB− Hmat thus depict
better performance with respect to Sparta. We see from the
figure that for all input instances the performance of SB− TC is
always better than the other two methods. SB− TC is 25% faster
on average compared to Sparta across all instances, enjoying
up to 38% better run time ( flickr − 4 d with contraction modes
{0,2}). We observe that SB− Hmat is faster than Sparta on 65
input instances out of the 85. SB− Hmat is up to 20% faster
than Sparta (on delicious− 4 d with contraction modes {0,1})
and up to 12% slower than Sparta (on enron with contraction
modes {1,2}). Overall, SB− Hmat is 7% faster than Sparta
across all input instances.

We further note that across all the input instances, the time
for the multiplication operation takes a majority of the total
execution time. For Sparta, the preprocessing time accounts
for 7.58% of the total time on average. For SB− TC, the pre-
processing time accounts for 6.13% of the total time on average.
For SB− Hmat, the time for preprocessing and postprocessing
combined accounts for 13.44% of the total time on average.
Therefore, the performance difference between Sparta and
SB− TC in the run time is due mostly to the efficiency in the
data access method during the multiplication operation. On the
other hand, SB− Hmat has a less involved data access pattern
than Sparta, as it works on the CSR representation of matrices.
All methods can benefit from ordering of matrices and tensors
in the preprocessing step to improve data locality.

TABLE II
RUN TIME (IN S) OF Sparta ON TWO REPRESENTATIVE INSTANCES FOR WHICH

Sparta COMPUTED THE TENSOR CONTRACTION IN MORE THAN ONE HOUR

We present in Table II the breakdown of sequential execution
time of Sparta on two instances that are representative of cases
for which Sparta takes over an hour. The tensor enron contains
54.20 million nonzeros, while the tensor contraction requires
47.13 billion flops and the resultant tensor has 6.93 billion
nonzeros. As we can observe, the preprocessing time is 23.41 s
and the time for SpGETT is 6383.67 s. Similarly, chicagocrime
contains 5.33 million nonzeros, while the tensor contraction
requires 72.81 billion flops and the resultant tensor has 16.93
billion nonzeros. For this input instance, the preprocessing time
of Sparta is 2.18 s and the SpGETT time is 20424.06 s. We
also ran SB− TC on the two instances in order to demonstrate
the relative performance of Sparta and SB− TC in extreme
settings. On enron with contraction modes {1,3}, SB− TC
completed in 4644.81 s, and on chicago_crimewith contraction
modes {2,3}, SB− TC completed in 16694.36 s. Here again,
we observe that SB− TC is faster than Sparta.

Next, we present the performance of parallel execution of
SB− Hmat, SB− TC and Sparta. Fig. 5 shows the relative
performance of parallel execution of SB− TC and SB− Hmat
with respect to Sparta on all 85 input instances, for different
thread counts. For each of the plots, y-axis shows the run
time of SB− TC, SB− Hmat and Sparta normalized by
the run time of Sparta for all instances. On the x-axis, the
instances are arranged in nondecreasing order by the ratio of
the run time of SB− TC to Sparta from left to right. The
geometric mean of the ratio of SB− TC to Sparta (dashed
line) and the geometric mean of the ratio of SB− Hmat to
Sparta (dot-dashed line) are also shown in the figure. Lower
values on the y-axis for SB− TC and SB− Hmat depict
better performance with respect to Sparta. We observe from
the figure that for parallel execution, SB− TC is consistently
faster than Sparta for all instances, for all thread counts. With
16, 32, 48, 64, 80 and 96 threads (Fig. 5(a)–(f)), SB− TC is on
average 21%, 22%, 22%, 23%, 20%, 21% faster, respectively
than Sparta across all input instances. Over all instances across
all thread counts, SB− TC is on average 21.48% faster than
Sparta. SB− TC demonstrates best performance w.r.t. Sparta
for 64 threads (Fig. 5(d)). Furthermore, we observe that across all
thread counts, SB− Hmat is on average faster than Sparta on
53 input instances out of the 85. SB− Hmat is on average 2.67%
faster than Sparta across all input instances for all thread counts,
thanks to fast matricization and high performance SpGEMM
library. We see from these figures that SB− TC is consistently
faster than the other two approaches in all thread counts.

Last, we study the scalability of parallel execution of
SB− TC, SB− Hmat and Sparta with respect to their respec-
tive sequential versions. Fig. 6 presents the parallel scaling of
SB− TC, SB− Hmat and Sparta over all the instances. We
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Fig. 5. The run time of SB− TC and SB−Hmat normalized by that of Sparta for parallel execution with {16, 32, 48, 64, 80, 96} threads on different
instances shown on the x-axis. The geometric mean of the ratio of SB− TC to Sparta is shown with the green dashed line and the geometric mean of the ratio
of SB−Hmat to Sparta is shown with the dot-dashed magenta line.

Fig. 6. Overall scalability of Sparta, SB−Hmat and SB− TC on all the
instances. Speedup of SB− TC, SB−Hmat and Sparta is with respect to
their respective sequential run time.

observe from the plot that all the three methods show similar
parallel scaling, while the absolute run time of SB− TC is
on average less than that of Sparta and SB− Hmat, since
SB− TC is faster than Sparta and SB− Hmat in sequential
execution. This is because the total time is in general dominated
by the multiplication step. Furthermore, the performance of
multiplication is limited by the memory access latency, due
to limited data locality particularly in the output tensor. Note
that we run our experiments on a machine having 4 NUMA
nodes having 24 cores each. The overall performance as well
as the scalability is also affected by NUMA effects. None of
the methods SB− Hmat, SB− TC, or Sparta implements
optimizations for NUMA systems. To give further insight we
note that for the sequential execution, across all input instances,
Sparta takes 163.06 s on average, SB− Hmat takes 151.64 s on
average and SB− TC takes 122.94 s on average. For parallel
execution with 96 threads, across all input instances, Sparta
takes 5.16 s, SB− Hmat takes 5.19 s and SB− TC takes 4.13 s
on average.

VII. CONCLUSION

We have investigated two approaches for performing parallel
sparse tensor-sparse tensor multiplication (SpGETT) on shared

memory systems: i) SpGETT via reduction to SpGEMM and ii)
SpGETT natively on the input tensors. We have identified that a
hashing scheme is needed in both approaches for efficiency and
proposed SBhash, a parallel dynamic hashing method. We have
used this hashing method to implement SB− Hmat, a state-of-
the-art method to compute SpGETT via reduction to SpGEMM,
and have shown through experiments that SB− Hmat is more
efficient than a readily available approach SB− Smat. We have
also used SBhash to propose SB− TC, an efficient parallel
hashing-based method to perform SpGETT natively on the input
tensors. We have demonstrated the efficacy of SB− Hmat
and SB− TC through a systematic evaluation and comparison
with the existing state-of-the-art parallel method for SpGETT.
Overall, SB− TC obtains about 21% better run time than the
current state-of-the art method on a machine with 96 cores.

The methods SB− Hmat and SB− TC can benefit from pre-
processing, in which matrices or tensors are reordered for better
data locality. A suitable reordering method should have a low
overhead and should be amenable to parallelization. Much work
remains to be done on algorithms for such reordering methods.
There are concurrent studies [15], [17], [26] that optimize the
performance of the sparse tensor contraction operation. These
studies adopt a more architecture-oriented approach, taking the
specificities of the underlying architecture into account to opti-
mize performance. We have implemented a few optimizations
aimed at improving cache efficiency, leaving other architecture-
oriented optimizations as future work.
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