
Graffix: Efficient Graph Processing with a Tinge of
GPU-Specific Approximations

Somesh Singh

Indian Institute of Technology Madras, India

ssomesh@cse.iitm.ac.in

Rupesh Nasre

Indian Institute of Technology Madras, India

rupesh@cse.iitm.ac.in

ABSTRACT
Parallelizing graph algorithms on GPUs is challenging due to the ir-

regular memory accesses involved in graph traversals. In particular,

three important GPU-specific aspects affect performance: memory

coalescing, memory latency, and thread divergence. In this work,

we attempt to tame these challenges using approximate computing.

We target graph applications on GPUs that can tolerate some degra-

dation in the quality of the output for obtaining the result in short

order. We propose three techniques for boosting the performance

of graph processing on the GPU by injecting approximations in

a controlled manner. The first one creates a graph isomorph that

brings relevant nodes nearby in memory and adds controlled replica

of nodes to improve coalescing. The second reduces memory la-

tency by facilitating the processing of subgraphs inside shared

memory by adding edges among specific nodes and processing

well-connected subgraphs iteratively inside shared-memory. The

third technique normalizes degrees across nodes assigned to a warp

to reduce thread divergence. Each of the techniques offers notable

performance benefits, and provides a knob to control the amount of

inaccuracy added to an execution. We demonstrate the effectiveness

of the proposed techniques using a suite of five large graphs with

varied characteristics and five popular graph algorithms.

CCS CONCEPTS
• Computing methodologies → Parallel algorithms; • Math-
ematics of computing → Graph algorithms; Approximation.

ACM Reference Format:
Somesh Singh and Rupesh Nasre. 2020. Graffix: Efficient Graph Processing

with a Tinge of GPU-Specific Approximations. In 49th International Confer-
ence on Parallel Processing - ICPP (ICPP ’20), August 17–20, 2020, Edmonton,
AB, Canada. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

3404397.3404406

Although this may seem a paradox, all exact science is
dominated by the idea of approximation.

— Bertrand Russell

1 INTRODUCTION
Graph is a fundamental data structure to model a broad spectrum

of real-world problems. Graph analytics pertains to various fields,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8816-0/20/08. . . $15.00

https://doi.org/10.1145/3404397.3404406

such as bioinformatics, machine learning, social network analysis,

and computer security among others. Graph analytic algorithms

extract useful information from graphs by analyzing their struc-

tural properties and how information propagates through them;

for instance, the effect of a drug and identifying communities. For

scaling graph algorithms, former research has targeted parallelizing

popular graph algorithms on multi-core CPUs [2, 27], many-core

GPUs [4, 30, 32], as well as distributed and heterogeneous sys-

tems [5, 7, 9]. According to the TAO model, the primary technical

challenge posed by graphs is due to inherent irregularity in the

data-access, control-flow, and communication patterns [24]. This

forces compilers to make pessimistic assumptions about them as

the graphs are available only at runtime, leading to reduced paral-

lelization benefits. The recent past has witnessed the emergence of

very effective techniques to represent graphs compactly [3, 27, 28],

to tame irregular computations [2, 23, 29, 31], and to map those to

the underlying hardware [23, 30].

Our focus in this work is graph analytics on GPUs. The basic

execution unit on GPUs is a wavefront or a warp, wherein threads

execute in single-instruction-multiple-data (SIMD) fashion. For best

performance, a GPU implementation must be tailored for efficient

warp execution. It needs to be optimized along three important

dimensions: memory coalescing [31], memory latency [21], and

thread divergence [23]. Graph processing poses challenges for coa-

lesced memory accesses due to unpredictable connectivity between

graph vertices. A common strategy for improving coalescing is

reordering of vertices. It is effective in improving the spatial locality

of vertices by assigning consecutive ids to those that are likely to

be accessed in tandem [2, 23]. Thus, the graph vertices could be

pre-numbered based on the connectivity, so that neighbors of ver-

tices being processed by warp-threads are nearby in GPU memory

(typically, the vertices are numerically indexed). The second crucial

dimension for efficient GPU execution is memory latency. Graph

algorithms are often memory-bound due to the irregular memory

access patterns and the resulting reduced cache benefits, making

them more sensitive to memory latency. In the presence of hun-

dreds of thousands of threads running on the GPU, per-thread cache

benefits are further diminished. Therefore, literature has proposed

various mechanisms such as kernel unrolling and usage of shared

memory to reduce memory latency [12, 21]. Using shared memory

requires identifying reusable attribute data (at the vertex or the

edge) in the graph algorithm and taking advantage of the temporal

locality. The third necessary dimension for efficient GPU execution

is thread divergence. It occurs when warp-threads need to execute

different instructions (or no-op) at the same time, resulting in loss

of parallelism. thread divergence is rampant in graph algorithms

due to arbitrary degree-distribution, leading to load-imbalance. For

skewed degree distributions prevalent in several real-world graphs,

https://doi.org/10.1145/3404397.3404406
https://doi.org/10.1145/3404397.3404406
https://doi.org/10.1145/3404397.3404406

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Somesh Singh and Rupesh Nasre

load-imbalance poses sequentiality bottleneck. Former research

has proposed degree-sorting, nested kernels, loop-splitting, and

edge-based processing to reduce thread divergence [2, 31].

While the proposed solutions in literature are effective in im-

proving the overall execution, there is an inherent limit to their

effectiveness. The proposed techniques are exact, that is, those (cor-
rectly) compute the same information as the original unoptimized

program. Therefore, the optimizations cannot be applied beyond a

point, limited by the graph structure. This poses a hindrance to effi-

cient computation of time-consuming operations such as between-

ness centrality computation, wherein exact parallel computation

may take days for a billion-scale network.

Our goal in this work is to go beyond the traditional solutions

and improve graph analytics on GPUs by allowing small approxi-

mation in the computation. For example, in network visualization

tools such as Gephi, when employing a force-directed graph lay-

out algorithm (e.g., ForceAtlas2), there is a trade-off between the

quality of the simulation and the time for convergence. Similarly,

we may estimate a set of k nodes with the largest betweenness

centrality (BC) in a network faster without computing the exact

BC values of the nodes [26]. With the growing importance of edge-

computing and low-energy devices, it is paramount to approximate

each of CPU-, memory- and communication-intensive processing.

Indeed, there have been approximation techniques employed to

speed-up graph algorithms [8, 26]. In a similar setting, we target

graph applications that can tolerate some degradation in the result

quality in exchange for faster execution. However, our target is

GPU-specific optimizations which would collectively help general

graph algorithms, rather than a particular algorithm. Thus, we pose

the following questions:

• If we compute an approximate solution, can we improve co-

alescing, and reduce memory latency and thread divergence

beyond what is possible for the exact solution? A logical

answer to this question is in the affirmative, but it is a non-

trivial task, as we illustrate in this paper.

• What would be the improvement due to approximations in

terms of the execution time of the graph algorithm?

• What would be the knob that enables control of the amount

of approximation added and its effect on the execution time?

In this work, we devise a new graph reordering strategy to enable

coalesced accesses, a new method exploiting clustering coefficient

to improve the usage of shared memory, and an edge-insertion

based method to reduce thread divergence while improving con-

vergence. We have designed all the techniques keeping in mind

propagation-based graph algorithms, following the vertex-centric
model of parallelization, wherein the threads operating on the as-

signed set of nodes propagate information to the nodes’ neighbors

along their incident edges.

Each of our proposed techniques involves preprocessing the

input graph. The overhead incurred is expected to be amortized over

multiple executions on the transformed graph. There are application

scenarios that require input graphs to be processed multiple times,

justifying the preprocessing of the graphs. For instance, computing

a 2-approximate solution to the Steiner tree problem [13] (routinely

used in network design and wiring layout) involves running SSSP

from multiple terminal nodes to find the shortest path between

every pair of terminal nodes. In the case of page-rank computation,

the cost can be justified when more refined results are desired.

It is challenging to add approximations that are also GPU-friendly,

to achieve a good speedup. One needs to balance between the

precision-efficiency trade-offwhile designing an approximatemethod.

We clarify that our proposal embodies approximations, but is not

an approximation algorithm in the traditional sense.

This paper makes the following contributions:

• For time-consuming graph applications, we argue for ap-

proximate computation to go beyond the current limits of

GPU-specific optimizations. Such approximations should be

algorithm- and graph-oblivious to apply to a wide variety of

graph analytic computations and graph structures.

• We propose Graffix, a framework for approximate comput-

ing techniques to improve coalescing, memory latency, and

thread divergence of graph processing kernels on GPU. Each

of the proposed techniques modifies the graph structure to

accomplish the goal. Our techniques offer tunable knobs to
control the amount of approximation injected.

• We illustrate the effectiveness of Graffix using a suite of

five widely-used algorithms, namely, betweenness central-

ity computation (BC), minimum spanning tree computation

(MST), page rank computation (PR), single-source shortest

paths computation (SSSP), and finding strongly connected

components (SCC). We observe that Graffix leads to im-

proved execution times, trading off some accuracy. Our pro-

posed techniques for improving coalescing, reducing mem-

ory latency and reducing thread divergence yield respective

geomean speedups of 1.16×, 1.20× and 1.07× while main-

taining geomean accuracies in the ballpark of 10%, 12.7%

and 8.2% respectively. Graffix also improves the execution

performance of the state-of-the-art graph frameworks Gun-

rock [30] and Tigr [23] in exchange for small inaccuracies.

Thus, we show that our techniques do not compete with the

existing GPU-specific optimizations, but complement those.

They can be combined for improved benefits.

2 IMPROVING MEMORY COALESCING

A GPU-parallel algorithm exemplar: betweenness centrality.
Consider the parallel Brandes’ algorithm [25] for computing the

vertex betweenness centrality in an unweighted graph, as shown

in Algorithm 1. It as an exemplar of a general class of parallel

algorithms on GPU. BC ranks the graph vertices according to the

number of shortest paths that pass through them.

Brandes’ algorithm is a two-pass procedure. The forward pass is a
breadth-first traversal (BFS) which results into a BFS directed acyclic

graph (DAG). This DAG is traversed backward in the second pass

to accumulate the number of shortest paths passing via each vertex.

The accumulation is performed using the notion of dependency. The
dependency of a vertex v w.r.t. a given source vertex s is δs (v). It is
computed using the following recurrence:

δs (v) =
∑

w |v ∈pred (s,w)

σsv
σsw

(1 + δs (w)) (1)

Here, σsv is the number of shortest paths from s tov , andpred(s,w)

is a list of immediate predecessors ofw in the shortest paths from s
tow (computed using the forward pass at Line 3). The size of the

pred list of a vertex is bounded by its degree. pred lists of all the

Graffix: Efficient Graph Processing with a Tinge of GPU-Specific Approximations ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

vertices together induce a DAG D over the graph G. BC of each

vertex is computed as a summation over all the sources, as shown

below (computed using the backward pass at Line 6):

bc(v) =
∑

s,v ∈V
δs (v) (2)

Algorithm 1 BC Computation over graph G(V ,E)

1: bc[v] = 0 ∀v ∈ V ▷ initialization

2: for all s ∈ V do
▷ Forward Pass: form BFS DAG, D

3: for all v : Node ∈ G do ▷ In parallel

4: compute σsv ▷ atomic add

5: compute pred(s, v)
▷ Backward Pass: backward traverse DAG, D

6: for all v : Node ∈ D do ▷ In parallel

7: compute δs (v)
8: bc[v] += δs (v)
9: for all (u → v) ∈ E do ▷ Reset graph attributes

10: reset(u → v)

We pursue the inner parallel strategy of parallelizing Brandes’

algorithm, i.e., each of the computation steps (lines 3, 6 in Algo-

rithm 1) is executed in parallel for a single source, and different

sources are processed in sequence. In the forward pass, each thread

enumerates a vertex’s neighbors and updates σsv . On the GPU, due

to multiple threads writing to the same vertex’s σ , threads need
to synchronize using an atomic instruction (such as atomicAdd
from CUDA). On the memory access front, the memory access for

σ in Algorithm 1 is generally uncoalesced due to the unpredictable

node-connectivity. Reading (and writing) a node’s neighbors’ σ
also suffers from low locality which causes significant memory

latency and limits overall performance. Further, since warp-threads

assigned to different vertices may process different numbers of

neighbors, the forward pass incurs thread divergence. In the back-

ward pass, processing δ attribute of a node’s predecessors leads to

reduced coalescing, low locality, and high thread divergence.

2.1 Coalescing in Graffix
Graffix makes the graph more structured to improve coalescing.

To this end, we devise a modified graph layout by rearranging

graph nodes, edges, and their associated information to make warp-

threads access nearby memory locations with higher probability.

We use the Compressed Sparse Row (CSR) format to represent

the graph, having an offset array, an edges array, and auxiliary

arrays to store edge attributes and node attributes. Figure 1 shows
an example directed graph and its CSR representation. In a vertex-

based processing, a thread is assigned to a vertex. Hence, accesses to

the offset array and the source vertex attribute array are coalesced.

However, due to the irregular memory access pattern of the node
attributes array resulting from the neighbor traversal of the nodes,

the accesses to node attributes array are largely uncoalesced.

A key primitive in graph operations is neighbor enumeration
wherein a warp, assigned to a set of vertices, iterates through their

neighbors to propagate information. Such a neighbor enumeration

is done in all the algorithms in our experimental setup. Graffix
improves coalescing for this primitive. At a high level, our technique

uses a careful combination of renumbering and replication to bring

together in memory the data of those nodes that are likely to be

accessed in tandem. Vertex renumbering helps bring connected

Algorithm2 Graffix technique for improvingmemory coalescing

Input: Graph G(V , E)
Output: Graph G′(V ′, E′)

1: function TransformGraph(G)

▷ Step 1: Vertex renumbering

2: v .level =∞ ∀v ∈ G .V
3: for Node s : G .V orderedby (decreasing node degree) do
4: if s .level ==∞ then
5: s .level = 0

6: BFS(G, s) ▷ Assigns levels to nodes

7: RenumberVertex(G, k) ▷ k is the chunk size

▷ Step 2: Node replication

8: ReplicateVertex(G, k)
▷ The transformed graph is G’(V’,E’)

9: end function

10: function RenumberVertex(G, k)
11: gId = 0;

12: for Node n : L0 do ▷ L0 is list of nodes at the 0
th

level in G′s BFS forest
13: n.id = gId++;

14: for i = 0 .. numLevels-2 do ▷ numLevels is number of BFS levels

15: gId =

⌈
gId

k

⌉
× k

16: for j = 0 .. (max node degree in Li) do ▷ Li is the list of nodes at level i
17: for Node n : Li do
18: if (n.degree > j) && (n.neighbors[j] ∈ Li+1) then
19: n.neighbors[j].id = gId++

20: end function

21: function ReplicateVertex(G, k)
▷ Nodes array divided into chunks of size k , such that, chunkId[u] = u/k

22: for Node n : G .V do ▷ n is a non-hole node

23: countn = [] ▷ hash table to count the number of edges from n to a chunk

24: for Node v : n.neighbors do
25: if v ∈ Li && ∃u ∈ Li−1 , such that, u is a hole then
26: countn [v .chunkId]++
27: for curChkId : countn .ChunkIds do ▷ ids of chunks having edges from n

28: connectedness
n
curChkId

=
countn [curChkId]

non-hole nodes with curChkId

29: if connectednessn
curChkId

≥ threshold then
30: Duplicate n to get n′

31: n′
.id = u .id, such that, curChkId in Li && u ∈ Li−1 ▷ Fill holes

32: for Node p : n.neighbors, such that, p .chunkId == curChkId do
33: Remove edge n → p
34: Add edge n′ → p
35: Add edges n′ → q ∀q , such that, q .chunkId == curChkId;

q is a 2-hop neighbor of n
36: end function

nodes and their data together. However, it has a limitation that

a node occurs exactly once, and therefore it cannot be nearby all

its neighbors (as their node ids could be far apart). This limitation

is overcome with replicating the node, thereby allowing such a

node to be nearby its neighbors. Graffix creates copies of a node,

subject to a certain condition, and inserts the copies of these nodes,

along with their edge-lists, in the vicinity of their neighbors in the

CSR representation. Algorithm 2 presents the pseudocode of our

technique. TransformGraph() is the driver routine. We explain

the scheme in detail below.

2.2 Renumbering Scheme
Graffix renumbers vertices such that warp-threads are assigned

nearby ids. While node renumbering is well-explored in the litera-

ture to improve thread divergence and locality [2, 10], it is ineffec-

tive when applied directly to improve coalescing. This is because

the numbering assigns consecutive ids to a node’s neighbors. This

improves locality in serial processing, as the same thread would

process all the neighbors. However, due to this, threads belonging

to the same warp end-up processing vertices numbered far apart –

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Somesh Singh and Rupesh Nasre

reducing coalescing. For instance, in Figure 1, assume the warp-size

to be 4. The nodes 0–3 are assigned to threads having the same id as

the node. With vertex centric processing, the warp-threads would

access the attributes of the first neighbor of the respective nodes

concurrently, and so on. The first neighbors are indicated by the

offset array: 0, 7, 13, 16, to be indexed into the edges array. The
warp threads would access the locations 4, 0, 11, and 19 in the node

attributes array together. Further, assuming that the accesses to a

chunk of 4 words can be coalesced, the accesses to the destination

nodes’ (4, 0, 11, 19) data in the node attributes array are not coa-

lesced since each of these lies in a separate 4-word chunk. Hence,

we propose a new numbering scheme for improving coalescing.

The numbering starts with a vertex having the highest outdegree

and performs breadth-first traversal (BFS) on the graph, till all

the nodes in the graph are visited, to obtain a BFS tree or a BFS

forest if the graph is disconnected. In the graph is disconnected,

the source nodes for the subsequent BFS traversals are picked in

the decreasing order of outdegree among the unvisited nodes. The

levels of the visited nodes are updated to a lower value, if possible, in

the case of multiple BFS traversals. The loop at line 3 in Algorithm 2

accomplishes this. For example, in the graphG from Figure 1, vertex

0 has the highest outdegree. Performing BFS from vertex 0 on G
visits vertices {0, 4, 5, 6, 7, 8, 13, 14, 15, 17}. The source for the

next BFS is vertex 1 since it has the highest outdegree among the

unvisited nodes. BFS from 1 covers vertices {1, 10, 12, 18} among

the unvisited nodes. Further, among the already visited nodes, the

levels of nodes 15 and 17 are reduced to 1. Next, applying BFS from

node 2 covers vertices {2, 11, 19}, while BFS from 3, 9 and 16 cover

vertices 3, 9 and 16, respectively. Thus, vertices 0, 1, 2, 3, 9 and 16

are at level zero, while all others are at level one.

An important observation is that the nodes at the same level

in the BFS forest are going to be accessed by consecutive threads.

Therefore, those are assigned ids incrementally in a round-robin

fashion. Thus, the first neighbor of each of the parents from the

previous level is assigned a new id followed by the renumbering

of all the second-neighbors, and so on. For instance, in Figure 2b,

which shows the renumbered graph, node 8 is the first unnumbered

neighbor of node 0, while node 9 is the first unnumbered neighbor

15

4

1

18

7

12

10

0

17

8

6

5

14

13

19

3

9

16

2

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

offset

edges

17 18 19 20 21 22 23 24 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 7

4 5 6 7 8 13 14 0

13 16 17 18 19 19 19 20 21 22 23 24 24 25 25 26 26 26 26

12 15 17 18 11 15 19 19 15 6 17 19 12 19 18 6 19

node attributes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

edge attributes

17 18 19 20 21 22 23 24 25

10

Figure 1: Original graph G and its CSR representation

19

16

1

13

21

9

15

0

17

20

12

8

14

18

11

3

4

5

2

10

(a)

0 1 2 3 4 5

8 12
9 10 11

14 16 18 20 21
13 15 17 19

(b)

Figure 2: (a) Graph G from Figure 1 with renumbered nodes
(b) The same graph reoriented for clarity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 21 22 2317 18 19

Figure 3: Holes in nodes after renumbering G

of node 1. A crucial aspect of Graffix’s numbering scheme is that

the new node ids at each level of the BFS forest start from a multiple

of k (1 ≤ k ≤ warp-size), as shown in RenumberVertex() routine

at line 10 of Algorithm 2. This is different from the prior numbering

schemes and provides an opportunity for accesses to be coalesced

at every level. For instance, Figure 2a is the renumbered graph with

k = 8, and Figure 2b is its isomorph. With the new renumbering,

vertices 0 through 5 are at BFS level zero. The next level starts with

a multiple of k (= 8) greater than the last vertex id 5 (that is, there

are no vertices with ids 6 and 7). Hence, the next level is occupied

by vertices 8 through 21.

Creation of Holes. An important aftereffect of Graffix number-

ing is that since not all levels have the number of nodes in multiples

of k , the renumbering scheme may create holes in the CSR repre-

sentation arrays. For instance, the renumbering gives rise to holes
in the nodes array at locations 6, 7, 22 and 23, as shown in Figure 3.

The choice of k controls the number of holes at each level of the

BFS forest. The number of holes at a level is < k . Graffix exploits

these holes to enhance the degree of coalescing. It uses replica-

tion to copy specific nodes to these holes. The controllable node

replication modifies the underlying graph and can introduce some

approximation. Carefully identifying the nodes to replicate aids the

underlying graph computation to reach its fixed-point faster.

2.3 Node Replication
The node replication to fill the holes needs to ensure that (i) it im-

proves coalescing, leading to improved execution time, and (ii) the

error is small. This is done as follows. Following the renumbering,

the nodes array (which now also includes holes) is divided into

chunks of size k , the same as that used for vertex renumbering. A

Graffix: Efficient Graph Processing with a Tinge of GPU-Specific Approximations ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

warp processes the nodes of a chunk. If a node is well-connected to

a chunk, our goal is to replicate the node in the chunk containing

the parents of the chunk’s nodes (as obtained from the BFS forest).

For instance, in Figure 2b, hole number 6 can become a replica of

node 0, because the chunk containing nodes 8, 12, 14 as well as

another chunk containing nodes 16, 18, 20, 21 are well-connected

to node 0. This would improve coalescing when neighbors of hole 6

are enumerated (see Figure 4). Graffix achieves it as follows. From
each of the non-hole nodes, we maintain a count of the outgoing

edges to the chunks whose parent chunks have holes. Further, we

define connectedness
node

chunk

∆
=

(
edges to chunk from a node

non-hole nodes in chunk

)
for

each such node–chunk pair. If the connectedness of a node to a chunk
is higher than a threshold, the node is deemed to be well-connected

to the chunk and thus we replicate the node (ReplicateVertex()

routine at line 21 in Algorithm 2). Variable threshold is a tunable
parameter and controls the amount of inaccuracy. When there are

more candidate nodes eligible for replication to a chunk, than holes

in that chunk, the nodes with higher edge-count are prioritized.
Since holes in the CSR representation arrays do not contribute

to any ‘useful’ work done, it is instructive to reduce the unoccupied

holes in the modified graph. A judicious choice of k and threshold
is instrumental in increasing the occupancy of the holes. In our

experiments, we use k = 16 and set the threshold to 0.6 and 0.4

for the scale-free graphs and the road networks, respectively. We

introduce new edges from a node replica to the non-hole nodes of

a chunk. If the node being replicated has an edge to a node in the

chunk, we add edges from the replica to its 2-hop neighbors inside

the chunk to which there is not already an edge.

Controlling the approximation. Adding edges in this manner

expedites the propagation of information among nodes while ensur-

ing that the node attributes read or written to in a coalesced fashion

also contribute to some meaningful computation. The amount of

inexactness is proportional to the number of new edges added in

the graph. Thus, by controlling the number of newly added edges,

Graffix can keep the inaccuracy in check. The addition of edges

as above results in only a few additional edges per replica since we

restrict the view to a contiguous chunk of size k in the nodes array

at a time, while looking for the 2-hop neighbors of the node being

replicated. Graffix ensures that the node to be replicated has a

high degree. So, adding few extra edges adds only small inaccuracy.

For our example, we divide the nodes array (Figure 3) in the

renumbered graph into chunks of size k (= 8). Assume that the

threshold on connectedness for replication of a node is set to 0.6.

In the renumbered graph in Figure 2, node 0 has 4 edges to the chunk

16..23 and the chunk has two holes. Hence, the connectedness0
16..23 =

4

6
= 0.667. Since the connectedness of 0 to the chunk is greater than

the threshold, we replicate 0 in chunk 0..7. We assign the id 6 to the

replica of 0 and distribute the existing edges of 0 between 0 and 6.

We also add new edges from 6 to nodes 17 and 19, as these are the

2-hop neighbors of 0 in the chunk 16..23. This leads to the modified

graph G ′
shown in Figure 4.

2.4 Confluence due to Replication
Due to controlled node replication, the underlying graph structure

undergoes some changes. As aftermath, different node-copies in

0 1 2 3 4 5

8 12
9 10 11

14 16 18 20 21
13 15 17 19

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

offset

edges

17 18 19 20 21 22 23 24 25 26 27

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

node attributes

0 3 9 12 13 14 15 21 21 22 23 24 24 24 24 25 26 27 27 27 27 28 28 28 28

8 12 14 0 9 13 15 17 19 10 11 19 11 11 11 16 17 18 19 20 21 12 13 11 12 9 19 17

Figure 4: Modified graph G ′ with its CSR representation.
Note that more edges got added compared to the original
graph as well as there are holes in the CSR representation.

the modified graph may exhibit different attribute values at the end

of a GPU kernel iteration. Since logically these copies represent the

same node, these attribute values need to be merged. The merging

or the confluence may be done after a certain number of iterations

or at the end of the overall computation. To reduce inaccuracies,

Graffix merges attribute values from the copies of the same node

after every iteration. The merge operator itself could be defined

in two ways: (i) algorithm-aware, and (ii) algorithm-agnostic. The

former is likely to result in better accuracy but needs additional

knowledge. Graffix uses the latter approach and applies a generic

confluence operator which computes arithmetic mean of different

values. One can easily redefine themerging. For instance, in Figure 4,

at the beginning of the algorithm, the attributes of nodes 0 and 6

will be the same. After each iteration, we merge the attribute values

of nodes 0 and 6 using the arithmetic mean.

3 REDUCING MEMORY LATENCY
We seek to exploit the GPU memory hierarchy to reduce the time

spent in fetching/updating data from/to global memory to curtail

the execution time. Shared memory available per thread-block has

been exploited in various ways in literature, and demands reuse of

data items. For instance, in an unrolled kernel, the updated attribute

values can be kept temporarily in shared memory. Alternatively,

when a connected subgraph is processed by a thread, the stack or

the queue can be stored in shared memory depending upon whether

the subgraph traversal is depth-first or breadth-first [20].

Graffix proposes a new way of exploiting shared memory to

process more-frequently-accessed nodes. Identifying such nodes

at runtime adds inefficiency. On the other hand, identifying such

nodes based on crude approximations such as degree is not very

fruitful. Graffix exploits the graph property of clustering coeffi-
cient (CC) to identify such nodes. For the purpose of computing

CC, we consider the graph to be undirected. The nodes having CC

higher than a threshold are moved to shared memory, along with

their neighbors. For instance, in Figure 5a, node N1 has a high CC,

so it can be moved to shared memory along with its neighbors.

As nodes with a high CC are part of well-connected clusters, such

clusters will be accessed frequently in iterative processing of the

graph. Such high-CC nodes can be processed inside shared mem-

ory. Due to the power-law distribution, very few nodes have very

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Somesh Singh and Rupesh Nasre

N1

A B

C D

E

(a)

N1

A B

C D

E

(b)

Figure 5: Reducing memory latency using shared memory

high CC leading to underutilization of shared memory. Adding ap-

proximation improves the applicability of the technique. Graffix
selectively adds edges between nodes to effect the following:

(1) Increase the CC of the nodes having CC lower than, but close

to, the threshold. This allows moving such nodes, along with

the neighbors, from global memory to shared memory.

(2) Further boosting the CC of the nodes whose CC are already

higher than the threshold.

In the first case, we add new edges preferentially between those

neighbors of a high-CC node that have common neighbors. The

purpose is to increase the CC of the node, and its neighbors, to

make them candidates for being processed inside shared memory.

In the second scenario, we add edges between those neighbors of a

high-CC node that have the fewest edges with the other neighbors

of that high-CC node. The rationale is to increase the connectivity

among the neighbors of the high-CC node. Graffix looks at the

connectivity only among the siblings of the high-CC nodes since

these nodes will be in shared memory. We move the high-CC nodes

to shared memory, along with their immediate neighbors alone.

For instance, in Figure 5a, we add edges between the neighbors

of N1 having the fewest edges incident on them, that is, nodes

A, B, C, D. For faster convergence, in both the scenarios above,

the edges are added between the 2-hop neighbors. The resulting

subgraph is shown in Figure 5b. Only a few edges are added in this

manner. Additionally, we maintain a global limit for the number

of edges added to the graph to contain the approximation. limits

the inaccuracy. To enable reuse, the sub-graphs in shared memory

are processed for a few iterations (say, t). We found that setting

t ∼ (2 × diameter of the subgraph) gave good performance benefits

because of sufficient reuse. Thereafter, the attribute values of the

nodes are pushed back to global memory.

Discussion. An alternative scheme for increasing the number and

the size of the subgraph processed inside shared memory is to set a

lower threshold on the clustering coefficient. However, this results

in diminished benefits due to low reuse and impaired accuracy.

Therefore, we recommended keeping the CC cut-off relatively high.

4 REDUCING THREAD DIVERGENCE
While degree-sorting [2] is an effective way to address thread diver-

gence, it is often an overkill, since having nearly-uniform degrees

only within each warp often suffices. Graffix combines bucket-sort

and approximate computing to reduce thread divergence, as we

explain below. As a preprocessing step, Graffix performs bucket

sort on the nodes array using the node-degree as the key. This

groups the nodes having similar degrees together. In each bucket,

A

B C

D

G

H

I

J

K

L

T2 T1

M

EF

N

P

(a)

A

B C

D

G

H

I

J

K

L

T2 T1

M

EF

N

P

(b)

Figure 6: Handling divergence by graph transformation.
Edges IG and IK are added for uniform node-degrees.

we assign nodes to warps in the order of their bucket positions.

When node degrees are different, we carefully add a few edges to

reduce thread divergence. Judicious addition of edges reduces the

effect of approximations.

Adding edges. Additional edges are the source of approximation.

Hence, among the warp-nodes, we add extra edges to only those

that are deficient in their connectivity. If the difference of a node’s

degree to the warp’s max-degree is lower than a threshold, we add
edges to it to get its degree close to the warp-nodes’ max-degree.

This causes the warp-node degrees to become more uniform. The

threshold dictates the number of edges added. As an extreme, it is

possible to remove thread divergence fully with this technique.

Noting that most graph algorithms are propagation-based, we

choose the destination nodes to be the 2-hop neighbors, leading

to faster convergence. While the structural changes take care of

node degrees, the choice of the edge-weights for the new edges

(for weighted algorithms such as SSSP) is often fuzzy. In the case

of weighted graphs, we set the weight of a new edge as the sum of

the weights of the edge between the node and the 1-hop neighbor,

and the edge between the 1-hop and the 2-hop neighbors. One can

choose an alternative method to set up the edge-weights.

By adding edges in this manner, the warp threads which would

otherwise be waiting for the longest-running thread to complete,

perform some useful work in the meantime. The information prop-

agated to their 2-hop neighbors is useful for the next iterations of

the algorithm. Thus, the extra work done by the few warp threads

per iteration contributes to the overall performance improvement.

Example. Consider the graph in Figure 6a. Suppose threads T1
andT2 belong to the same warp and are operating on nodes A and I
respectively. Since the outdegree of node A (7) is more than that of I
(4),T1 has to process more edges thanT2. Assume that the threshold

on the difference in node degrees for the purpose of adding edges

is
maxdeдr ee

2
. Also, assume that vertex A is the max-degree node

in the warp. As the difference in the degrees of I and A is 3, which

is less than
7

2
, our method adds new edges IG and IK to make the

outdegree of node I close to the max-degree. The new outdegree

Graffix: Efficient Graph Processing with a Tinge of GPU-Specific Approximations ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Graph |V | |E | Graph type

×106 ×106

rmat26 67.1 1073.7 R-MAT using GTgraph [16]

random26 67.1 1073.7 Random graph using GTgraph [16]

LiveJournal 4.8 68.9 Social network, small diameter

USA-road 23.9 57.7 Road network, large diameter

twitter 41.6 1468.3 Twitter graph 2010 snapshot

Table 1: Input graphs

of I is 6 (∼85% of max-degree). Nodes G and K are 2-hop neighbors

of I. Figure 6b shows the modified graph.

Effect of Graffix techniques on parallel BC. In Algorithm 1,

Graffix’s technique for memory coalescing brings closer nodes

that are accessed in tandem by the warp-threads during the graph

traversal on lines 3 and 6. The technique for memory latency en-

sures that the well-connected subgraphs are processed iteratively in

shared memory. Further, the degrees of the warp-nodes during the

traversal are normalized to curtail workload-imbalance.

5 EXPERIMENTAL EVALUATION
We evaluate the performance of our approximate techniques and

compare it with the exact versions of the respective algorithms. We

study five graph problems: SSSP, MST, SCC, PR and BC (Section 1).

All these problems are popular in the community and, along with

various graphs, their parallel algorithms stress-test our techniques.

Input Graphs. We select graphs with varying characteristics,

shown in Table 1, to demonstrate the robustness of our approach.

The graphs include an R-MAT graph and an Erdős-Rényi graph both

having a billion edges, generated by GTgraph [16]; small-diameter

LiveJournal and Twitter social networks; and a large-diameter real-

world USA-road road network, all three from SNAP [14]. These

graphs exhibit different behaviors for different techniques.

Baselines. We use three baselines to evaluate our techniques. First,

we compare our approximate techniques with the exact implemen-

tation of SSSP, PR and BC available in Gunrock [30]. Second, we

compare our approximate techniques with the exact implementa-

tion of SSSP, PR and BC available in Tigr [23]. Third, we compare

our approximate SSSP and approximate MST with the respective

exact versions from LonestarGPU [4], approximate SCCwith the ex-

act SCC by Devshatwar et al. [6], and approximate PR and BC with

the parallel implementations of the exact PR computation and exact

Brandes’ algorithm respectively [28]. Singh and Nasre’s work [28]

is the closest to our work. They propose algorithm-agnostic ap-

proximate techniques for graph algorithms on GPUs. In contrast,

Graffix exploits approximation for GPU-specific optimizations.

We note that the average inaccuracy using their method is close to

20%. In contrast, Graffix incurs only half of its precision loss.

Machine Configuration. We perform experiments on a machine

with an Intel Xeon 32-core E5-2650 v2 CPU having 100 GB RAM

and Nvidia K40C GPU having 2880 cores spread across 15 SMXs

with 12 GB memory. It runs CentOS 6.5. We use CUDA 8.0.

The execution times of the exact methods on the five graphs

for the algorithms from the three baseline implementations are

presented in Tables 2, 3 and 4. We report on the effect of approxima-

tions on the actual execution times of the algorithm implementation,

which preclude file I/O and preprocessing steps, but include graph

attribute initialization (such as vertex distances), initial CPU-GPU

Graph Exact Time (sec)
SSSP MST SCC PR BC

rmat26 37 8996 21 12 15223

random26 29 10087 23 16 13127

LiveJournal 2 3424 7 1 1711

USA-road 152 82 12 1 2043

twitter 231 10943 37 18 21462

Table 2: Baseline-I: Execution time for exact versions

Graph Exact Time (sec)
SSSP PR BC

rmat26 6 0.914 587

random26 4 1.180 498

LiveJournal 0.046 0.452 66

USA-road 12 0.130 38

twitter 17 3.000 827

Table 3: Baseline-II: Execution time for Tigr

Graph Exact Time (sec)
SSSP PR BC

rmat26 19 1.070 872

random26 8 1.500 740

LiveJournal 0.142 0.530 98

USA-road 25.139 0.181 56

twitter 53 4.000 1227

Table 4: Baseline-III: Execution time for Gunrock

Technique Graph Preprocessing overhead
Time (sec) Additional space

Improving coalescing

rmat26 76 9%

random26 59 11%

LiveJournal 8 6%

USA-road 304 8%

twitter 463 7%

Reducing latency

rmat26 155 5%

random26 107 8%

LiveJournal 21 5%

USA-road 348 4%

twitter 532 7%

Reducing thread divergence

rmat26 42 2%

random26 46 3%

LiveJournal 5 2%

USA-road 38 1.5%

twitter 157 4%

Table 5: Preprocessing overhead

data transfer, and the main fixed-point loop repeatedly calling the

primary kernel. We measure the inaccuracy incurred for each of

the techniques by averaging the absolute difference between the

attribute values of the vertices for the exact and the approximate

versions. For SSSP, the attribute is the distance; for PR, it is the page

rank; and for BC, it is the betweenness centrality. For SCC, we cal-

culate the difference in the number of connected components, while

for MST, we calculate the difference in the minimum spanning tree

weights computed by exact and approximate methods. The code

for Graffix is available at https://github.com/ssomesh/Graffix.

5.1 Preprocessing Overhead
The preprocessing overheads for the approximate techniques target-

ing memory coalescing, memory latency, and thread divergence are

presented in Table 5. The mean times for transforming the graphs in

our test-suite for improving coalescing, reducing memory latency

and reducing thread divergence are 182s, 233s, and 58s respectively.

This is a one-time offline cost. The execution of complex algorithms

https://github.com/ssomesh/Graffix

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Somesh Singh and Rupesh Nasre
SS

SP

Graph Speedup Inaccuracy
rmat26 1.22 × 12%

random26 1.13 × 10%

LiveJournal 1.18 × 11%

USA-road 1.15 × 9%

twitter 1.17 × 12%

M
ST

rmat26 1.18 × 13%

random26 1.13 × 15%

LiveJournal 1.14 × 12%

USA-road 1.23 × 11%

twitter 1.17 × 13%

SC
C

rmat26 1.14 × 8%

random26 1.08 × 14%

LiveJournal 1.13 × 7%

USA-road 1.16 × 11%

twitter 1.15 × 12%

PR

rmat26 1.20 × 5%

random26 1.15 × 7%

LiveJournal 1.21 × 7%

USA-road 1.19 × 6%

twitter 1.22 × 7%

B
C

rmat26 1.17 × 9%

random26 1.12 × 13%

livejournal 1.15 × 10%

USA-road 1.19 × 12%

twitter 1.14 × 11%

Geomean 1.16 × 10%

SS
SP

Graph Speedup Inaccuracy
rmat26 1.26 × 12%

random26 1.08 × 17%

LiveJournal 1.22 × 13%

USA-road 1.30 × 13%

twitter 1.18 × 12%

M
ST

rmat26 1.22 × 16%

random26 1.10 × 18%

LiveJournal 1.18 × 16%

USA-road 1.20 × 19%

twitter 1.16 × 15%

SC
C

rmat26 1.20 × 12%

random26 1.10 × 16%

LiveJournal 1.22 × 13%

USA-road 1.20 × 12%

twitter 1.18 × 13%

PR

rmat26 1.32 × 7%

random26 1.16 × 11%

LiveJournal 1.26 × 7%

USA-road 1.30 × 5%

twitter 1.22 × 9%

B
C

rmat26 1.24 × 14%

random26 1.13 × 18%

LiveJournal 1.21 × 16%

USA-road 1.26 × 15%

twitter 1.17 × 13%

Geomean 1.20 × 13%

SS
SP

Graph Speedup Inaccuracy
rmat26 1.06 × 8%

random26 1.03 × 9%

LiveJournal 1.07 × 8%

USA-road 1.12 × 7%

twitter 1.09 × 6%

M
ST

rmat26 1.05 × 10%

random26 1.02 × 11%

LiveJournal 1.07 × 8%

USA-road 1.09 × 10%

twitter 1.05 × 9%

SC
C

rmat26 1.04 × 9%

random26 1.00 × 7%

LiveJournal 1.04 × 6%

USA-road 1.05 × 9%

twitter 1.06 × 8%

PR

rmat26 1.10 × 4%

random26 1.04 × 9%

LiveJournal 1.08 × 5%

USA-road 1.06 × 8%

twitter 1.09 × 8%

B
C

rmat26 1.11 × 11%

random26 1.05 × 14%

livejournal 1.09 × 9%

USA-road 1.12 × 7%

twitter 1.06 × 12%

Geomean 1.07 × 8%

Table 6: Effect of memory coalescing Table 7: Effect of shared memory Table 8: Effect of thread divergence

Approximate Graffix versus exact Baseline-I

SS
SP

Graph Speedup Inaccuracy
rmat26 1.16 × 12%

random26 1.06 × 10%

LiveJournal 1.13 × 11%

USA-road 1.08 × 9%

twitter 1.12 × 12%

PR

rmat26 1.14 × 5%

random26 1.08 × 7%

LiveJournal 1.15 × 7%

USA-road 1.12 × 6%

twitter 1.15 × 7%

B
C

rmat26 1.09 × 9%

random26 1.05 × 13%

livejournal 1.07 × 10%

USA-road 1.11 × 12%

twitter 1.06 × 11%

Geomean 1.10 × 9%

SS
SP

Graph Speedup Inaccuracy
rmat26 1.24 × 12%

random26 1.07 × 17%

LiveJournal 1.20 × 13%

USA-road 1.26 × 13%

twitter 1.15 × 12%

PR

rmat26 1.30 × 7%

random26 1.14 × 11%

LiveJournal 1.26 × 7%

USA-road 1.28 × 5%

twitter 1.22 × 9%

B
C

rmat26 1.19 × 14%

random26 1.11 × 18%

LiveJournal 1.17 × 16%

USA-road 1.23 × 15%

twitter 1.16 × 13%

Geomean 1.19 × 12%

SS
SP

Graph Speedup Inaccuracy
rmat26 1.02 × 8%

random26 1.01 × 9%

LiveJournal 1.02 × 8%

USA-road 1.04 × 7%

twitter 1.03 × 6%

PR

rmat26 1.06 × 4%

random26 1.02 × 9%

LiveJournal 1.04 × 5%

USA-road 1.03 × 8%

twitter 1.05 × 8%

B
C

rmat26 1.04 × 11%

random26 1.01 × 14%

livejournal 1.02 × 9%

USA-road 1.05 × 7%

twitter 1.03 × 12%

Geomean 1.03 × 8%

Table 9: Effect of memory coalescing Table 10: Effect of shared memory Table 11: Effect of thread divergence

Approximate Graffix versus exact Baseline-II

such as those for BC and MST consume more time than prepro-

cessing. For the simpler algorithms such as those for SSSP, SCC,

and PR, the preprocessing time is significantly higher. This extra

preprocessing cost may be amortized over several runs of multiple

algorithms. The corresponding mean extra space consumed by the

transformed graphs (w.r.t. the original graph) is 8%, 5.6%, and 2.3%

respectively for the three techniques, which is practically not high.

5.2 Effect of Coalescing
Table 6 shows the effect of Graffix’s technique for coalescing

for five graphs on the five algorithms from Baseline-I. We report

the results with threshold on connectedness set to the value which

provides best results (which is different for different graphs). In

particular, threshold of 0.6 performs well for power-law graphs and

Graffix: Efficient Graph Processing with a Tinge of GPU-Specific Approximations ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada
SS

SP

Graph Speedup Inaccuracy
rmat26 1.20 × 12%

random26 1.1 × 10%

LiveJournal 1.17 × 11%

USA-road 1.12 × 9%

twitter 1.16 × 12%

PR

rmat26 1.17 × 5%

random26 1.13 × 7%

LiveJournal 1.19 × 7%

USA-road 1.18 × 6%

twitter 1.20 × 7%

B
C

rmat26 1.11 × 9%

random26 1.07 × 13%

livejournal 1.09 × 10%

USA-road 1.16 × 12%

twitter 1.09 × 11%

Geomean 1.14 × 9%

SS
SP

Graph Speedup Inaccuracy
rmat26 1.22 × 12%

random26 1.06 × 17%

LiveJournal 1.23 × 13%

USA-road 1.28 × 13%

twitter 1.16 × 12%

PR

rmat26 1.27 × 7%

random26 1.12 × 11%

LiveJournal 1.19 × 7%

USA-road 1.25 × 5%

twitter 1.17 × 9%

B
C

rmat26 1.21 × 14%

random26 1.13 × 18%

LiveJournal 1.19 × 16%

USA-road 1.24 × 15%

twitter 1.14 × 13%

Geomean 1.19 × 12%

SS
SP

Graph Speedup Inaccuracy
rmat26 1.07 × 7%

random26 1.03 × 8%

LiveJournal 1.06 × 7%

USA-road 1.08 × 7%

twitter 1.05 × 6%

PR

rmat26 1.09 × 5%

random26 1.03 × 6%

LiveJournal 1.10 × 5%

USA-road 1.07 × 8%

twitter 1.08 × 8%

B
C

rmat26 1.06 × 11%

random26 1.04 × 13%

livejournal 1.08 × 10%

USA-road 1.10 × 6%

twitter 1.07 × 12%

Geomean 1.07 × 8%

Table 12: Effect of memory coalescing Table 13: Effect of shared memory Table 14: Effect of thread divergence

Approximate Graffix versus exact Baseline-III

of 0.4 for the road-network. We observe significant performance

gains (mean 1.16×) for several algorithm-technique pairs, with

some accuracy loss (mean 10%). Note that the accuracy loss is

nearly half of that provided by the approximate versions of the

baseline (as stated in the paper [28]). Tables 9 and 12 show the

effect of our approximate techniques for coalescing for five graphs

on the algorithms in Tigr and Gunrock, respectively. We observe

that the speedups achieved over Gunrock are similar to Baseline-I.

The speedups achieved over Tigr are lower since Tigr implements

a memory access optimization, edge-array coalescing, to alleviate

the irregularity in memory accesses. The inaccuracies for graph–

algorithm pairs are similar across all baselines, because inaccuracy

is tied to the modifications in the graph’s structure.

Effect of Connectedness. Connectedness forms the tunable knob

between speedup and inaccuracy. Figure 7 compares Graffix against
Baseline-I, for various values of the threshold on the connectedness
of a node to a chunk, for a fixed chunk-size of 16. For a small

threshold, the speedup is low and the inaccuracy is high due to

more replications. However, we observe a steady increase in the

speedup with increase in the threshold up to a point (0.6 in the

plot), followed by a gradual decline in the performance gains. This

is because the number of nodes getting replicated is enough for the

combined benefits of coalesced accesses to show effect. Also, the

occupancy of the holes is high. However, upon further increasing

the threshold (beyond 0.6), only a few nodes get replicated and

the number of unoccupied holes is large. This results in reduced

performance benefits for larger thresholds. The inaccuracy, on the

other hand, gets benefited by increasing the threshold. This is due

to fewer edges getting added due to a larger value of the threshold.

Guidelines for the Threshold. The threshold on connectedness,
for a fixed chunk size, is based on the degree distribution. The

power-law graphs have some high degree nodes. Majority of such

nodes may be replicated if the threshold is low. To ensure that only

the nodes with a high connectedness are replicated, in the interest

of accuracy and the graph size, the threshold is set to a fairly large

value. Setting a high threshold (above 0.6) would prohibit enough

replication, which would hurt performance. In contrast, the node

degrees in a road-network are small and largely uniform. For good

hole occupancy, the threshold is chosen to be small (below 0.5).

5.3 Effect of Memory Latency
Table 7 shows the effect of using shared memory on the five algo-

rithms for five graphs from Baseline-I. We observe performance

gains for various algorithm-technique pairs. The threshold for clus-

tering coefficient (CC) is set to a different value for each of the

graphs for obtaining decent accuracy and speedup. Tables 10 and

13 show the effect of our approximate techniques for reducing mem-

ory latency for five graphs on the algorithms in Tigr and Gunrock,

respectively. The speedups achieved over Gunrock and Tigr are

similar (1.19×) to those achieved over Baseline-I. The inaccuracies

for graph–algorithm pairs are similar (11%) across all baselines.

Effect of CC Threshold. Figure 8 plots the speedup and inaccu-

racy, w.r.t. Baseline-I, with varying thresholds for clustering coeffi-

cient. There is a consistent increase in speedup with increase in

the threshold, since an increased threshold implies well-connected

subgraphs occupying the shared memory, thereby benefiting from

the its low memory latency. However, for threshold ∼ 1, fewer

nodes are moved to shared memory, resulting in diminished gains.

As the threshold is increased, the inaccuracy first rises and later

reduces. The rise in inaccuracy is because it exposes more nodes

whose CC can be increased by addition of edges using the scheme

presented in Section 3. However, after a point (threshold = 0.8), the

inaccuracy reduces as the candidate nodes for processing inside

shared memory have better connectivity; so we add fewer edges.

Guidelines for the Threshold. The choice of the threshold for

CC is based on the graph’s average CC and degree distribution.

Since the focus is on finding nodes that are part of a well-connected

cluster, the threshold must be set to a high value for all graphs.

5.4 Effect of Thread Divergence
Table 8 shows the effect of reducing thread divergence for five

graphs on the five algorithms from Baseline-I. We obtain minor

performance improvements for various algorithm-technique pairs,

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Somesh Singh and Rupesh Nasre

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

sp
e
e
d

u
p

in
a
ccu

ra
cy

 (%
)

threshold on connectedness of node to chunk

SSSP, twitter speedup
inaccuracy

Figure 7: Effect of varying the threshold
for node replication.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 5

 10

 15

 20

sp
e
e
d

u
p

in
a
ccu

ra
cy

 (%
)

threshold for local clustering coefficient

SSSP, twitter speedup
inaccuracy

Figure 8: Effect of varying the threshold
for clustering-coefficient

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

sp
e
e
d

u
p

in
a
ccu

ra
cy

 (%
)

threshold for degree normalization

SSSP, twitter speedup
inaccuracy

Figure 9: Effect of varying the threshold
for degree normalization.

with reasonably high accuracy in most cases. Tables 11 and 14

show the effect of our approximate techniques for reducing thread

divergence for five graphs on the algorithms in Tigr and Gun-

rock, respectively. We observe that the speedups achieved over

Gunrock are similar to Baseline-I. Tigr already implements node

splitting transformations for reducing thread divergence. There-

fore, speedups achieved over Tigr are lower. The inaccuracies for

graph–algorithm pairs are similar across all baselines.

Effect of Degree Similarity. To measure the variation in node

degrees, we define:

degreeSim
node

∆
=
(
1 −

node degree

maximum degree of warp nodes

)
degreeSim identifies the deficit in the degree of a node compared

to other nodes assigned to the samewarp. Figure 9 plots the speedup

and inaccuracy, w.r.t. Baseline-I, with varying thresholds for

degreeSim
node

. The node degree is made 85% of the warp’s max-

degree. As we increase the threshold, we allow more edges. We

observe that the speedup increases with increase in threshold up to

a point (0.3 in Figure 9) after which it begins to drop. This is because

when limited edges are added, the performance improves due to

the combined effect of reduced thread divergence and faster propa-

gation. Performance gains drop with further increase in threshold.

This is because the size of the graph increases due to addition of

considerable number of edges, which begins to dominate. Inaccu-

racy increases monotonically with increase in threshold since a

higher threshold allows for addition of more edges.

Guidelines for the Threshold. For obtaining reasonable accu-

racy and speedup, the threshold on degreeSim is set based on the

degree distribution. If on an average, the mean node degree in a

bucket is quite low, or if it is closer to the maximum node degree

than to the minimum node degree in the bucket, then the threshold

should be set to a low value (below 0.4). Picking the threshold this

way ensures addition of limited extra edges as we normalize the

degree of only relatively-large-degree nodes in a warp.

6 RELATEDWORK
To the best of our knowledge, Graffix is the first technique that
marries approximate computing with GPU-specific optimizations.

Parallel Graph Processing. Graph algorithms [24] have been

shown to bear enough parallelism especially in the context of dis-

tributed [5, 9] and heterogeneous systems [5, 7]. Merrill et al. [18]

propose work-efficient graph traversal on GPUs with several opti-

mizations based on prefix-sum. Hong et al. [10] propose multiple

methods for BFS on a heterogeneous system. Their hybrid method

chooses the best execution among sequential, multi-core CPUs and

single GPU. Nobari et al. [22] propose a GPU-based parallel Prim’s

algorithm for minimum spanning forest (MSF) computation. They

concurrently expand several subsets of the computed MSF. Hong

et al. [11] present a scalable algorithm for finding strongly con-

nected components, tailored for small-world graphs. They exploit

the data- and task-level parallelism in the FW-BW-Trim algorithm.

McLaughlin and Bader [17] present an efficient parallel implemen-

tation for betweenness centrality computation on heterogeneous

architectures. Their schemes provide performance improvements

on diverse graphs. RADAR [2] combines data duplication and graph

reordering to accelerate graph processing on multi-core systems. It

uses degree-sorting to assign highly-connected hub vertices consec-
utive id’s. It creates per-thread copy for the hub vertices to reduce

false sharing and the cost of atomic updates. Reverse Cuthill-McKee

(RCM) [15] is a reordering algorithm that uses a refinement of BFS.

In contrast to Graffix, RCM performs level order traversal such

that nodes at a level are visited in order of their BFS parent’s place-

ment in the previous level and in descending degree order for nodes

with the same earliest BFS parent.

GPU-specific Optimizations. Zhang et al. [31] present tech-

niques for removal of dynamic irregularities in GPU computation,

to effect better memory coalescing. They use data reordering and

job swapping, and runtime adaptation techniques for effective re-

duction in dynamic irregularities. Nasre et al. [21] discuss using

shared memory for maintaining part of the worklist, and local

worklist needed for kernel unrolling in the case of data-driven and

topology-driven approaches respectively. Ashari et al. [1] present a

representation of sparse matrices based on the compressed sparse

row format to reduce thread divergence by combining rows into

groups having a similar number of non-zero elements, which is well

suited for graph processing applications. Gunrock [30] operates on

frontiers of nodes or edges. A filtering operation removes inactive

items from this frontier followed by application of user-defined

functors to frontier in parallel. It also employs parallel graph tra-

versal throughput optimization strategies. Nodehi Sabet et al. [23]

propose to address the graph irregularity issues by transforming the

graph to make it more structured. Tigr uses virtual split transforma-

tions and memory access optimization, called edge-array coalescing
to the reduce thread divergence and to improve the data locality.

Graffix: Efficient Graph Processing with a Tinge of GPU-Specific Approximations ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Approximation Techniques. Mittal [19] presents a survey of ap-

proximation techniques. Gubichev et al. [8] present a preprocessing-

based technique for approximate SSSP computation. As precompu-

tation, the shortest paths w.r.t few landmark nodes are computed for

every node. The distance values of the query nodes w.r.t. a selected

landmark node are combined to find the approximate distances.

Sampling techniques are used extensively for approximate compu-

tation on graphs. Riondato and Upfal [26] propose a progressive

sampling based family of algorithms to approximate the BC values.

7 CONCLUSION
We proposed graph transformation techniques for efficient graph

processing on GPUs using approximate computing. Our techniques

improve memory coalescing, memory latency and thread diver-

gence by graph reordering and graph transformation. Using a suite

of five popular graph algorithms and five large graphs, we illus-

trated that our proposed techniques reduce execution times of

parallel implementations of graph algorithms appreciably. We be-

lieve that approximate methods bear the potential to go beyond the

benefits of traditional optimizations, with the growing importance

of edge-computing and low-energy devices.

REFERENCES
[1] Arash Ashari, Naser Sedaghati, John Eisenlohr, Srinivasan Parthasarathy, and P.

Sadayappan. 2014. Fast Sparse Matrix-vector Multiplication on GPUs for Graph

Applications. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’14). IEEE Press, Piscataway,

NJ, USA, 781–792.

[2] Vignesh Balaji and Brandon Lucia. 2019. Combining Data Duplication and Graph

Reordering to Accelerate Parallel Graph Processing. In Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed Computing
(HPDC ’19). Association for Computing Machinery, New York, NY, USA, 133–144.

[3] Maciej Besta, Simon Weber, Lukas Gianinazzi, Robert Gerstenberger, Andrey

Ivanov, Yishai Oltchik, and Torsten Hoefler. 2019. Slim Graph: Practical Lossy

Graph Compression for Approximate Graph Processing, Storage, and Analytics.

In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’19). ACM, New York, NY, USA, Article 35,

25 pages.

[4] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. 2012. A Quantitative Study

of Irregular Programs on GPUs. In Proceedings of the 2012 IEEE International
Symposium on Workload Characterization (IISWC). IEEE Computer Society, Wash-

ington, DC, USA, 141–151.

[5] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks,

Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon: A Communication-

Optimizing Substrate for Distributed Heterogeneous Graph Analytics. In Pro-
ceedings of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2018). Association for Computing Machinery, New

York, NY, USA, 752–768.

[6] Shrinivas Devshatwar, Madhur Amilkanthwar, and Rupesh Nasre. 2016. GPU

Centric Extensions for Parallel Strongly Connected Components Computation.

In Proceedings of the 9th Annual Workshop on General Purpose Processing Using
Graphics Processing Unit (GPGPU ’16). ACM, New York, NY, USA, 2–11.

[7] Abdullah Gharaibeh, Lauro Beltrão Costa, Elizeu Santos-Neto, and Matei Ripeanu.

2012. A Yoke of Oxen and a Thousand Chickens for Heavy Lifting Graph Process-

ing. In Proceedings of the 21st International Conference on Parallel Architectures
and Compilation Techniques (PACT ’12). ACM, New York, NY, USA, 345–354.

[8] Andrey Gubichev, Srikanta Bedathur, Stephan Seufert, and GerhardWeikum. 2010.

Fast and Accurate Estimation of Shortest Paths in Large Graphs. In Proceedings of
the 19th ACM International Conference on Information and Knowledge Management
(CIKM ’10). ACM, New York, NY, USA, 499–508.

[9] Harshvardhan, B. West, A. Fidel, N. M. Amato, and L. Rauchwerger. 2015. A

Hybrid Approach to Processing Big Data Graphs on Memory-Restricted Systems.

In 2015 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, Hyderabad, India, 799–808.

[10] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. 2011.

Accelerating CUDA Graph Algorithms at Maximum Warp. In Proceedings of the
16th ACM Symposium on Principles and Practice of Parallel Programming (PPoPP
’11). Association for Computing Machinery, New York, NY, USA, 267–276.

[11] Sungpack Hong, Nicole C. Rodia, and Kunle Olukotun. 2013. On Fast Parallel

Detection of Strongly Connected Components (SCC) in Small-world Graphs.

In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC ’13). ACM, New York, NY, USA, Article 92,

11 pages.

[12] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. 2014. CuSha:

Vertex-centric Graph Processing on GPUs. In Proceedings of the 23rd International
Symposium on High-performance Parallel and Distributed Computing (HPDC ’14).
ACM, New York, NY, USA, 239–252.

[13] L. Kou, G. Markowsky, and L. Berman. 1981. A fast algorithm for Steiner trees.

Acta Informatica 15, 2 (01 Jun 1981), 141–145.

[14] Jure Leskovec and Rok Sosič. 2014. SNAP: A general purpose network analysis

and graph mining library in C++. http://snap.stanford.edu/snap.

[15] Wai-Hung Liu and Andrew H. Sherman. 1976. Comparative Analysis of the

Cuthill–McKee and the Reverse Cuthill–McKee Ordering Algorithms for Sparse

Matrices. SIAM J. Numer. Anal. 13, 2 (1976), 198–213.
[16] Kamesh Madduri and David A. Bader. 2006. GTgraph: A suite of synthetic

random graph generators. http://www.cse.psu.edu/~madduri/software/GTgraph/.

[Online; accessed May 28, 2013].

[17] Adam McLaughlin and David A. Bader. 2014. Scalable and High Performance

Betweenness Centrality on the GPU. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC ’14). IEEE
Press, Piscataway, NJ, USA, 572–583.

[18] Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU

Graph Traversal. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ’12). ACM, New York, NY, USA, 117–

128.

[19] Sparsh Mittal. 2016. A Survey of Techniques for Approximate Computing. ACM
Comput. Surv. 48, 4, Article 62 (March 2016), 33 pages.

[20] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Data-Driven Versus

Topology-driven Irregular Computations on GPUs. In Proceedings of the 2013
IEEE 27th International Symposium on Parallel and Distributed Processing (IPDPS
’13). IEEE Computer Society, Washington, DC, USA, 463–474.

[21] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Morph Algorithms

on GPUs. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’13). ACM, New York, NY, USA, 147–156.

[22] Sadegh Nobari, Thanh-Tung Cao, Panagiotis Karras, and Stéphane Bressan. 2012.

Scalable Parallel Minimum Spanning Forest Computation. In Proceedings of the
17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’12). Association for Computing Machinery, New York, NY, USA, 205–214.

[23] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. 2018. Tigr: Trans-

forming Irregular Graphs for GPU-Friendly Graph Processing. In Proceedings of
the Twenty-Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’18). ACM, New York, NY, USA,

622–636.

[24] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Amber

Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich,

Mario Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. 2011. The Tao of Paral-

lelism in Algorithms. In Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’11). Association for

Computing Machinery, New York, NY, USA, 12–25.

[25] Dimitrios Prountzos and Keshav Pingali. 2013. Betweenness Centrality: Algo-

rithms and Implementations. In Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP ’13). ACM, New York,

NY, USA, 35–46.

[26] Matteo Riondato and Eli Upfal. 2016. ABRA: Approximating Betweenness Cen-

trality in Static and Dynamic Graphs with Rademacher Averages. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’16). ACM, New York, NY, USA, 1145–1154.

[27] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. 2015. Smaller and Faster:

Parallel Processing of Compressed Graphs with Ligra+. In 2015 Data Compression
Conference, DCC 2015, Snowbird, UT, USA, April 7-9, 2015. IEEE, Washington, DC,

USA, 403–412.

[28] Somesh Singh and RupeshNasre. 2018. Scalable and Performant Graph Processing

on GPUs Using Approximate Computing. IEEE Transactions on Multi-Scale
Computing Systems 4, 3 (2018), 190–203.

[29] Somesh Singh and Rupesh Nasre. 2019. Optimizing Graph Processing on GPUs

Using Approximate Computing: Poster. In Proceedings of the 24th Symposium
on Principles and Practice of Parallel Programming (PPoPP ’19). Association for

Computing Machinery, New York, NY, USA, 395–396.

[30] Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl Yang, Leyuan

Wang, Muhammad Osama, Chenshan Yuan, Weitang Liu, Andy T. Riffel, and

John D. Owens. 2017. Gunrock: GPU Graph Analytics. ACM Trans. Parallel
Comput. 4, 1, Article 3 (Aug. 2017), 49 pages.

[31] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen. 2011. On-

the-fly elimination of dynamic irregularities for GPU computing. In Proceedings
of the sixteenth international conference on Architectural support for programming
languages and operating systems. ACM, New York, NY, USA, 369–380.

[32] Jianlong Zhong and Bingsheng He. 2014. Medusa: Simplified Graph Processing

on GPUs. IEEE Trans. Parallel Distrib. Syst. 25, 6 (2014), 1543–1552.

http://snap.stanford.edu/snap
http://www.cse.psu.edu/~madduri/software/GTgraph/

	Abstract
	1 Introduction
	2 Improving Memory Coalescing
	2.1 Coalescing in Graffix
	2.2 Renumbering Scheme
	2.3 Node Replication
	2.4 Confluence due to Replication

	3 Reducing Memory Latency
	4 Reducing Thread Divergence
	5 Experimental Evaluation
	5.1 Preprocessing Overhead
	5.2 Effect of Coalescing
	5.3 Effect of Memory Latency
	5.4 Effect of Thread Divergence

	6 Related Work
	7 Conclusion
	References

